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Abstract Humans are social animals who engage in a variety of collective activities requiring 
coordinated action. Among these, music is a defining and ancient aspect of human sociality. Human 
social interaction has largely been addressed in dyadic paradigms, and it is yet to be determined 
whether the ensuing conclusions generalize to larger groups. Studied more extensively in non- 
human animal behavior, the presence of multiple agents engaged in the same task space creates 
different constraints and possibilities than in simpler dyadic interactions. We addressed whether 
collective dynamics play a role in human circle drumming. The task was to synchronize in a group 
with an initial reference pattern and then maintain synchronization after it was muted. We varied the 
number of drummers from solo to dyad, quartet, and octet. The observed lower variability, lack of 
speeding up, smoother individual dynamics, and leader- less inter- personal coordination indicated 
that stability increased as group size increased, a sort of temporal wisdom of crowds. We propose a 
hybrid continuous- discrete Kuramoto model for emergent group synchronization with a pulse- based 
coupling that exhibits a mean field positive feedback loop. This research suggests that collective 
phenomena are among the factors that play a role in social cognition.

Editor's evaluation
Taking joint drumming as a model of collective dynamics, and combining solid quantitative methods, 
the authors characterize how human behavior changes, at the individual- and group- level, as a func-
tion of group numerosity. A take- home message of this important work is that not everything we 
know from studies involving dyads should be necessarily generalized to larger groups. This study will 
be of great interest to scientists looking for new approaches to understanding group behavior, espe-
cially within the fields of human cognition, neurosciences, and musicology.

Introduction
Humans are social animals who engage in a variety of collective activities requiring coordinated joint 
action. Collective goals can be achieved through spontaneously distributed workloads among group 
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members, such that the emerging collective dynamics confer benefits to performance not available to 
individuals—the ‘wisdom of crowds’ (Galton, 1907; Surowiecki, 2005).

Principles of collective dynamics explain the adaptive value of collective behavior in some species 
(Couzin, 2018). For example, collective dynamics can overcome the limitations of individuals’ knowl-
edge and ability to communicate (Goldstone and Roberts, 2006) by integrating information quickly 
during group decision making (Ispolatov, 2015; Miller et al., 2013; Rosenthal et al., 2015). Large 
coherent swarming and flocking in groups can arise from short- range interactions among proximal 
individuals in non- human animals including primates (Farine et  al., 2017), insects (Jacobs et  al., 
2007), fish, and birds (Miller et al., 2013; Parrish et al., 2002). As such dynamics have been demon-
strated in numerous species, theoretical models have been developed to provide additional quanti-
tative explanatory support. In contrast, in spatial tasks such as navigation, aggregate group behavior, 
formalized as a mean field, can serve to stabilize feedback to individuals by virtue of being a group 
average (Berdahl et al., 2018; Sumpter, 2006; Torney et al., 2009). Here, we test whether mean 
field behavior accounts for stability of temporal group dynamics in humans during a drumming task.

Collective dynamics are observable in animal as well as in human group behavior. Crowds of 
walking individuals achieve globally coherent states based on local inter- individual interactions (Rio 
et al., 2018; Warren, 2018). In audiences, individual- group interactions and social contagion govern 
the spontaneous onset and offset of applause (Mann et  al., 2013). Collective dynamics can also 
play a constitutive role in sports by permitting advantages not available to individuals alone (Vilar 
et al., 2013). Evidence of collective dynamics is seen even in the minimal group, a dyad: spontaneous 
synchronization between two individuals emerges from constraints such as weak coupling (Oullier 
et al., 2008; Schmidt et al., 1990; Schmidt and O’Brien, 1997).

Synchronized group action is an essential element of music making, a defining social behavior of 
human interaction (Honing et al., 2015; Patel and Iversen, 2014; Salimpoor et al., 2011; Savage 
et al., 2015; Trainor, 2015), and the value of precise synchronization may vary from culture to culture 
and across musical contexts (Benadon et  al., 2018; Davies et  al., 2013; Lucas et  al., 2011).The 
archaeological evidence of musical instruments goes back 30,000 years, and singing and drumming 
are thought to be even older (Conard et  al., 2009). The evolutionary origins of musical rhythmic 
actions may relate to social motor behaviors in non- human species, such as the synchronization and 
desynchronization of vocalizations between individuals in group chorusing, arising from pressures to 
either collaborate or compete (Gamba et al., 2016; Greenfield et al., 2017; Ravignani et al., 2014; 
Ravignani et al., 2019). Fundamental aspects of music are present in humans from early stages in 
development: infants show early musical preferences, social- emotional responses to music, and rate- 
sensitive motoric responses to musical rhythm (Cirelli et al., 2014; Cirelli et al., 2018; Trainor and 
Marsh- Rollo, 2019; Zentner and Eerola, 2010). Although musical behavior is found in individuals 
alone, it occurs mainly in groups ranging from duets to hundreds of participants. Yet, the role of 
collective dynamics, especially in groups larger than dyads, has largely remained untested. Here, we 
consider a musical task in which timing consistency and synchrony are crucial. We investigate in what 
ways the group average performs better than the individuals, a temporal version of the wisdom of the 
crowd phenomenon.

To account for group interaction, one popular strategy is to first develop a theory for single- person 
tasks and then extrapolate into dyadic contexts. For example, the idea that the brain is a prediction 
machine that enables timely motor control in an uncertain environment can be extrapolated as two 
brains mutually predicting each other (Friston and Frith, 2015; Wolpert et al., 2003). This means 
that each individual instantiates two processes: the first for controlling one’s own rhythm and timing 
and the second for predicting the rhythm and timing of the partner in the dyad (Heggli et al., 2019; 
Heggli et al., 2021; Keller et al., 2014; van der Steen and Keller, 2013). It is not clear, however, if 
this can serve as an adequate foundation for behavior in larger groups. Every individual would have to 
predict every other individual and potentially factor- in higher- order predictions. Furthermore, at the 
perceptual level, group size changes the auditory information available to an individual. A listener is 
likely to hear an entire choir as one, or a small number of, coherent sounds rather than perceive every 
singer’s voice within that choir.

Group interaction can also be addressed in terms of theoretical models explicitly developed for 
synchronization in systems made of many dynamic units (Alderisio et al., 2016; Oullier et al., 2008; 
Schmidt et al., 1990; Schmidt and O’Brien, 1997). The individual units in such models usually do 
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not contain processes dedicated separately to self- timing and other- predicting. Instead, each unit has 
only a self- timing and a phase- correction coupling term. The propagation of phase adjustment across 
all units is sufficient for the collective to enter a group- synchronized state, despite that each unit is 
only trying to cancel a phase difference. An important benefit of this approach is that it is inherently 
collective, converging on the same formalisms used for small or large groups of animals (Kelso, 2021; 
Zhang et al., 2019). Here, we consider such a system of coupled oscillators to account for empirical 
data on individual and group variability in a drumming task.

Group music making constitutes an ecologically valid and convenient paradigm for studying group 
action and collective experience in the laboratory (e.g. D’Ausilio et al., 2015). We used a timing task 
performed by groups of different sizes. Larger group dynamics are less studied because measuring 
highly precise timing while collecting group data is difficult for both logistical and methodolog-
ical reasons (cf. Alderisio et al., 2016; Chang et al., 2017; Chang et al., 2019; Chauvigné et al., 
2019; Shahal et al., 2020). Participants completed a group synchronization- continuation task (SCT; 
Figure 1A). It required them to drum in synchrony with an isochronous auditory stimulus and continue 
drumming at the same rate after the stimulus stopped, while we collected the onset times of each 
drum hit (Figure 1B). Stimulus tempo was varied across trials. We tested groups of two (dyads), four 
(quartets), and eight (octets) participants (Figure 1C). The task tested participants’ ability to synchro-
nize to an external reference as well as to other participants, while also minimizing temporal variability 
and maintaining the initial stimulus rate. This ensemble drumming was also compared against the solo 
condition. Specifically, participants tested in duets or quartets completed both solo and ensemble 
conditions. The octet group did not complete the solo conditions for logistical reasons, but they 
instead completed a control condition in which the synchronization phase continued for the whole 
trial (i.e. there was no continuation phase) as well as trials using a more complex and musically realistic 
rhythm. Analyses of the more complex rhythm will be reported separately.

Inspired by theoretical models from the animal literature (Sumpter, 2006), we assumed that indi-
vidual interactions average to overall group behavior, a mean field, which provides stabilizing feedback 
to individual group members (Figure 2). A key prediction was that the relative influence of the stabi-
lizing feedback would increase with increasing ensemble size. To this end, we measured separately the 
variability of individual drummers and the group. We constructed a theoretical group- aggregate onset 
time as the center of clusters of individual onset times. We expected that larger groups would exhibit 
lower variability as measured using the coefficient of variation of inter- onset intervals. We also tested 
this idea formally by adapting a Kuramoto model of group synchronization.

The (Kuramoto, 1975) dynamic system of coupled phase oscillators, Equation 1, was conceptu-
alized as a large population of oscillators with different natural frequencies capable of spontaneously 
locking to a common frequency.

 
θ̇i = ωi + K

N

N∑
j=1

sin
(
θj − θi

)
  

(1)

Here, θi is the phase of oscillator i, ωi is its preferred frequency, i.e., how fast around the unit circle 
it likes to go, K is coupling strength, and N is the number of oscillators.

The model gives a mathematical account of group synchronization as dependent on a mean field, 
referred to here as group aggregate. A central feature of the model is that the feedback is positive: 
the amplitude of the mean field grows as a function of inter- individual synchronization, and recip-
rocally, the individual oscillators are affected more by the mean field if its amplitude is larger, see 
Figure 2. This is shown by using the definition of the mean of phases, Equation 2, to express Equa-
tion 1 equivalently (Strogatz, 2000) in terms of the coupling between individual oscillators and the 
mean field, Equation 3.  Ψ  is the mean field phase, and r is the mean field coherence, also called order 
parameter (Kuramoto, 1975).

 
reiΨ = 1

N

N∑
j=1

eiθj

  
(2)

 θ̇i = ωi + rK sin
(
Ψ− θi

)
  (3)

Such individual- collective positive feedback loops enable ant trails and other phenomena in 
swarming animals (Sumpter, 2006) as well as acoustic herding in chorusing animals (Ravignani et al., 
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Figure 1. Experiment setup. (A) In ensemble condition, drummers faced each other in a circle. (B) The main task was synchronization- continuation 
where participants were paced initially by an auditory stimulus and then had to maintain the rhythm, tempo, and synchronization among each other. The 
inter- onset intervals between drum hits, shown schematically as vertical lines, were used to obtain individual- level measures of variability and speeding 
up. Cross- correlation and transfer entropy were used as pair- level measures of synchronization and interaction. (C) Transfer entropies, color, and width- 
coded, from three sample trials from different groups. Network analysis was applied to these graphs to obtain group- level characterization.

https://doi.org/10.7554/eLife.74816
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2014). The system also serves as a model for neuronal collective synchronization (Breakspear et al., 
2010; Frank et al., 2000; Noori et al., 2020). Theoretically, the principles embodied by this system 
should apply to group action in humans too (Zhang et al., 2019). It has found application in under-
standing inter- personal synchronization of dyads (Dotov et al., 2019; Heggli et al., 2019; Roman 
et al., 2019), individual rate preferences in the dyad (Bégel et al., 2022), and effects of coupling 
topology in larger groups (Alderisio et al., 2016). In the present context, the model predicts that 
ensembles will be more stable than individuals because of the feedback loop between the timing of 
individuals and the group aggregate of individuals.

The original Kuramoto model involves continuous dynamics and continuous coupling with constant 
gain and no delay. In a drumming task, participants are coupled by way of discrete acoustic onset 
times. Here, we propose a hybrid continuous- discrete system of oscillators with event- based feedback 
updated once per cycle, Equation 4. It utilizes a pulse function shaped like the acoustic envelope of a 
drum hit. To this end, Equation 5 specifies an asymmetric gamma distribution that rises sharply at time 
0 and then decays slowly (Figure 2—figure supplement 1). In the model, an oscillator emits a pulse 
once per cycle when its phase angle crosses zero. Furthermore, we posit additive phase variability 
with a Gaussian distribution  N

(
0,σ

)
 .

 
θ̇i = ωi + K

N

N∑
j=1

Pj̸=i(t)sinθi + N (0,σ), · · · · · · i = 1, ..., N
  

(4)

 
P
(
t
)

= f
(
t|a, b

)
= 1

baΓ
(

a
) ta−1e

−t
b

  (5)

Like the original system, this model involves intrinsic dynamics (ωi) and interaction dynamics given 
by the whole coupling term. For comparison, we tested two additional models: the classic Kuramoto 
system with constant full coupling, Equation 1, as well as the hybrid continuous- discrete model, Equa-
tions 4; 5, with a sparse coupling matrix in a ring topology. Specifically, the individual units were only 
coupled to their two immediate neighbors,  j = i ± 1 , with a periodic boundary condition,  θN+1 = θ1  
and  θ0 = θN   .

Figure 2. Group synchronization of eight oscillators with random initial conditions (A) and coherent phases later in the trial (B). The middle inset shows 
individual trajectories (red lines) and the mean field (blue line) in time (t). Averaging the phase oscillators θ (red lines) gives a so- called mean field (blue 
lines) with phase Ψ and amplitude r. As the individual oscillators become more coherent from (A) to (B), r increases which leads to stronger influence 
from Ψ to diverging θ’s (weight of the downward vectors).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The gamma distribution (a=1.25 and b=.02) in the pulse- coupled model of group synchronization localizes the coupling in time, 
Equation 5.

https://doi.org/10.7554/eLife.74816
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Results
In Performance, Dynamics and coordination in ensemble, SCT conditions, and Group dynamics, we 
present the analyses of the participants’ drumming behavior. In Variability in the mean- field model 
with discretely updated feedback, we present the results from our adapted hybrid model consisting 
of a continuous- discrete system of oscillators with pulse- based feedback updated once per cycle.

Performance
Variability
Does individual variability increase in ensemble compared to solo 
conditions?
To answer this question, we fitted a model including only individuals’ data in dyads and quartets 
(octets did not complete solo conditions). As Figure 3A shows, individuals’ variability increased when 
playing in an ensemble relative to playing solo (β=0.009, SE=0.001, t=6.65, and ω2=0.10).

In the context of true ensemble playing, how does variability of the individ-
uals and group aggregate change across dyads, quartets, and octets?
To specifically test the main hypothesis, we fitted a model to continuation (SCT) trials from all three 
group sizes in the ensemble playing condition. We found that individual variability increased with 
group size (β=0.001, SE=0.0005, t=2.20, and ω2=0.09), group- aggregate variability was lower than 
individual variability (β=−0.010, SE=0.003, t=−3.29, and ω2=0.01), and the difference between 
individual and group- aggregate variability increased for larger group sizes (β=−0.0025, SE=0.0005, 
t=−5.19, and ω2=0.03), see Figure 3A. As a sanity check, we verified that the procedure for group- 
aggregate onset times did not lead to spuriously periodic data. We observed very high variability 
for the pseudo- group- aggregate in solo condition where individuals did not hear each other, see 
Figure 3—figure supplement 1A.

How does variability compare between continuation and synchronization?
The octet group completed trials in conditions of both SCT (i.e. after the offset of the reference metro-
nome) and synchronization- only (with a constant reference metronome). Surprisingly, there were no 
differences between these conditions either in individual (t<1) or in group- aggregate variability (t<1).

Speeding up
Do individuals speed up more when playing solo than in dyad or quartet 
ensembles?
Speeding up was defined as the linear increase in tempo (i.e. decrease of IOIs) over the course of 
a trial. As expected, individuals sped up even when playing solo (β=0.018, SE=0.007, t=2.67, and 
ω2=0.10), and greater speeding up was observed in ensemble than in solo conditions (β=0.022, 
SE=0.007, t=3.29, and ω2=0.16). The effect of group size was not significant (t<1).

Do dyad, quartet, and octet ensembles speed up to different extents?
To test the effect of group size across the duets, quartets, and octets, a second model was fitted with 
group size as a continuous predictor, but only including trials in SCT ensemble playing. As suggested 
by Figure 4, there was a trend for speeding up to decrease as group size increased. The best linear 
model included an effect of tempo (β=−0.001, SE=0.00005, t=−1.98, and ω2=0.005) and an inter-
action between group size and tempo (β=−.00004, SE=0.000007, t=−6.20, and ω2=0.11), reflecting 
that at higher tempos larger ensembles sped up less than smaller ensembles, see Figure 4—figure 
supplement 1.

Dynamics and coordination in ensemble, SCT conditions
Individual and group-aggregate dynamics (autocorrelations)
Individuals
Figure 5A shows that individuals’ autocorrelations at lag 1 were negative across all group sizes and 
tempos. This is typical for the alternating long- short IOIs seen in synchronization tasks, reflecting 

https://doi.org/10.7554/eLife.74816
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Figure 3. Task performance measured in terms of mean (SE) coefficient of variation of inter- onset intervals (IOIs). 
(A) Synchronization- continuation task (SCT) drumming trials (no data collected in N8 solo condition). (B) Pulse- 
coupled Kuramoto model. N2=dyad; N4=quartet; N8=octet; Inds = individual participants; Aggr = group- 
aggregate; Solo = solo condition; Ensemble = ensemble condition. Error bars are standard errors. With missing 
trials, the number of observations in the respective conditions was n=(88, 88, 44, 111, 110, 32, ∅, 953, 133) in (A), 
and n=(200, 198, 99, 400, 400, 100, 800, 688, 86) in (B).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.74816
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alternating fast- slow synchronization errors when adapting to the previous interval. There was also a 
trend across all group sizes and tempo conditions for positive peaks at even lags (2, 4, 6, and 8) and 
negative peaks at odd lags (3, 5, and 7), see Figure 5—figure supplement 1. However, this general 
pattern became smoother with increasing group size. To test this statistically, in each trial, we took the 
average absolute difference between successive lags, thus measuring the average range of the auto-
correlation function up to lag 8 and applied the same linear modeling approach as in Performance. 
The effect of group size was significant (β=−0.0054, SE=0.0023, t=−2.35, and ω2=0.13). There was 
also a decrease of range with increasing tempo (β=−0.00039, SE=0.0001, t=−4.92, and ω2=0.04). 
Additionally, we verified the signs, relative magnitudes, and the effects of group size and tempo on 
the autocorrelations by fitting separate linear models for each lag, see Supplementary file 1a.

Group-aggregate
Interestingly, group- aggregate IOIs revealed the same overall pattern of results even though by defi-
nition the group- aggregate timing was smoother and less variable (see Group- aggregate (mean field) 
measure for ensembles and pseudo- ensembles), see Figure 5B and Supplementary file 1b. There 

Source data 1. 

Figure supplement 1. Task performance measured in terms of mean (SE) coefficient of variation of IOIs.

Figure supplement 2. Variability in alternative models of group synchronization.

Figure 3 continued

Figure 4. Mean (SE) speeding up defined as the linear slope of tempo over time, computed from the IOIs. N2=dyad; N4=quartet; N8=octet (no data 
collected in solo N8 condition). Error bars are standard errors. With missing trials, the number of observations in the respective conditions was n=(88, 
111, ∅, 88, 110, 482).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. 

Figure supplement 1. Task performance in ensemble, synchronization- continuation task (SCT) trials, measured in terms of (A) speeding up, defined as 
the linear slope of tempo over time, and (B) variability.

https://doi.org/10.7554/eLife.74816
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was a trend across all group sizes for relative positive peaks at even lags 2, 4, 6, and 8 and relative 
negative peaks at odd numbered lags 1, 3, 5, and 7. The similarity of the dynamics of individuals 
and the group aggregate is not trivial because it implies that even groups of up to eight participants 
spontaneously acquire the alternating long- short interval dynamics characteristic of when individual 
participants synchronize with a stimulus.

Inter-personal coordination (cross-correlations)
Cross- correlation applied to the pre- processed IOIs assessed inter- personal coordination between 
pairs of participants drumming together in the continuation phase of ensemble performances. On rare 
occasions, individuals produced diverging beat times by, for example, missing the drum or hitting it 
two times. The resulting outlier IOIs were removed, and the remaining were re- aligned relative to the 
other participants by temporal adjacency. The last pre- processing step consisted of whitening each 
time- series of IOIs (see From beat onset times to IOIs, outlier removal, and clustering–Pre- whitening).

We analyzed lags in the range 0–4 because cross- correlation coefficients tended to be symmetric 
between positive and negative lags, see Figure  6. As expected, cross- correlations at lag 0 were 
negative in duets (β=−0.039, SE=0.011, t=−3.60, and ω2=0.04), consistent with the pattern of results 
for autocorrelations, and inter- personal coordination dynamics were smoother in larger group sizes. 
Furthermore, lag 0 cross- correlations became less negative with increasing group size (β=0.012, 
SE=0.002, t=5.93, and ω2=0.13). Lag 1 cross- correlations were positive (β=0.14, SE=0.012, t=11.80, 
and ω2=0.32), but their magnitude decreased with group size (β=−0.016, SE=0.002, t=−7.14, and 
ω2=0.20). There were also effects of tempo, see Figure 6—figure supplement 1.

Figure 5. Autocorrelations in the synchronization- continuation task (SCT) in ensemble conditions. (A) Autocorrelations of individual IOIs, averaged 
(SE) across participants’ trials and tempos, separately per group size (color- coded). (B) Same for group- aggregate IOIs. Error bars are bootstrap 95% 
confidence intervals. The number of observations in the respective group sizes was n=(88, 110, 474) in (A) and n=(44, 32, 66) in (B).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. 

Figure supplement 1. Autocorrelations of individual IOIs in ensemble synchronization- continuation task (SCT) drumming, averaged (SE) across 
individual participants’ trials, shown separately per tempo (panels) and group size (color- coded lines). 

https://doi.org/10.7554/eLife.74816
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Group dynamics
Network analysis
We used network analysis in the continuation phase of trials of ensemble playing to describe group 
coordination at an even higher level of organization than interpersonal coordination. First, we 
obtained the directed graphs of functional connectivity among participant drummers. In each trial, the 
graph consisted of the real- valued directed links between pairs of drummers estimated by way of the 
transfer entropy (TE), see Figure 1C. Then, network properties of these graphs were computed, see 
Network analysis. There was a significant effect of group size on causal density (β=−0.0006, SE=0.0001, 
t=−5.88, and ω2=0.47), see Figure 7A. Causal density increased with tempo (β=0.008, SE=0.0019, 
t=4.01, and ω2=0.12). As Figure 7B shows, mean node strength increased with group size (β=0.0032, 
SE=0.00032, t=10.13, and ω2=0.73). Node strength was affected by tempo (β=0.016, SE=0.005, 
t=2.96, and ω2=0.07). For better model conditioning, tempos values were reduced and compressed 
by transforming them with a logistic function. Comparing between SCT trials and synchronization- 
only trials in the octet group found no difference for causal density (t<1) or mean node strength (t<1), 
suggesting group dynamics were similar regardless of whether a pacing stimulus was present or not.

Network properties and task performance
The relation between group dynamics and group performance was evaluated by regressing the 
network properties separately with respect to speeding up and IOI variability in ensemble playing. 
Speeding up decreased with increasing causal density (β=−0.005, SE=0.002, t=−2.22, and ω2=0.02) 
and was not associated with node strength (β=−0.01, SE=0.007, and t=−1.66), see Figure 7—figure 
supplement 1A–B. Variability was not associated with causal density (β=−.003, SE=0.0017, and 
t=−1.97) but decreased with increasing node strength (β=−0.007, SE=0.0019, t=−4.01, and ω2=0.09), 
see Figure 7—figure supplement 1C–D. Interestingly, we also observed that TE tended to be higher 
in trials that deviated less from the stimulus tempo, see Figure 7—figure supplement 2.

Figure 6. Cross- correlations in the synchronization- continuation task (SCT) in ensemble conditions. Averages (SE) 
across participant pairs and tempos are shown separately per group size (color- coded lines). IOIs were aligned 
across participants and pre- whitened by filtering with an autoregressive model. Error bars are bootstrap 95% 
confidence intervals. The number of observations in the respective group sizes was n=(44, 140, 1479).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. 

Figure supplement 1. Cross- correlations in the synchronization- continuation task (SCT) task, ensemble conditions, 
averaged across participant pairs (±CIs), per tempo (panels) and group size (color- coded lines).

https://doi.org/10.7554/eLife.74816
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Variability in the mean-field model with discretely updated feedback
The results of the modeling showed that the cycle duration variabilities of the mean- field hybrid 
Kuramoto model, adapted to have discretely updated feedback, reproduced the main experimental 
findings. The model results are summarized in Figure 3B and can be compared to the experimental 
results in Figure 3A. The adapted model reproduced the pattern of behavioral results at both the 
level of individual oscillators (relating to individuals in our drumming data) and the mean field (relating 
to our group- aggregate analyses). Specifically, for all group sizes, variability was higher for individual 
oscillators when playing in the group than when playing solo, but variability was always lowest for 
the mean field (group aggregate). In addition, with increasing group size, the difference between 
individual variability and that of the mean field became greater, indicating increasing collective bene-
fits with increasing group size. See Figure 3—figure supplement 1B for a comparison with the null 
(pseudo- ensemble) condition. A separate report will address the model’s individual unit dynamics 
and co- variation in more detail (Delasanta et al., in preparation). The importance of the mean- field 
hybrid model for understanding the present results can be seen in that other versions of the Kuramoto 
model did not successfully replicate the pattern of the data. Specifically, a pulse- coupled network in a 
neighbors- only ring- topology and a constant coupling network in full connectivity did not exhibit the 
same pattern of variability as the empirical data, see Figure 3—figure supplement 2A–B.

Discussion
The present study examined how group performance in a synchronization timing task depends on 
group size and interactions among group members. Our overall hypothesis was that the mean field 

Figure 7. Network dynamics. (A) Mean node strength increases with group size in the continuation phase of synchronization- continuation task (SCT) 
ensemble drumming trials. (B) Causal density decreases with group size (Abscissa jittered for visibility). 

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. 

Figure supplement 1. Association between drumming performance measures and network properties in synchronization- continuation task (SCT) 
ensemble trials.

Figure supplement 2. Transfer entropy (TE) is highest in synchronization- continuation task (SCT) trials with minimal tempo increase relative to the 
instructed tempo.

https://doi.org/10.7554/eLife.74816
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would influence individuals in a group, thereby stabilizing group performance. We expected that 
larger groups would exhibit more stable performance due to a more stable mean field. This hypoth-
esis was motivated by the collective dynamics that allow animals with limited capacity for interacting 
with each other to achieve mutual goals by exploiting processes such as positive collective feedback 
and wisdom of crowds (Sumpter, 2006). As expected, we observed that temporal variability in group 
drumming decreased with group size. This occurred only at the level of the ensemble or mean field 
when the group was taken as a single entity. The effect was reversed for individual participants; their 
variability increased from solo to group playing conditions and with group size. We showed that 
this result agrees with a collective dynamics framework based on an adapted Kuramoto model. The 
model is consistent with the idea from theoretical biology that self- organizing systems can successfully 
coordinate with an external constraint by reducing their disorder at the macro- level at the expense of 
increasing their micro- level disorder (Kugler and Turvey, 1987; Prokopenko et al., 2014) and that 
medium- sized groups exhibit commonalities with principles of organization found both in two- unit 
and large collectives (Kelso, 2021; Zhang et al., 2019). Our theory is related to the Vicsek model, 
an influential account of collective animal behavior which explains the spontaneous coherent heading 
direction arising in collective animal movement, also in human crowds, in terms of local interactions 
of attraction and repulsion (Silverberg et al., 2013; Vicsek et al., 1995). The Vicsek model also relies 
on individual coupling with the average of a group, with the important difference that only a small 
radius of neighbors defines the interaction field, called a local order parameter (Chaté et al., 2008).

The continuous- discrete Kuramoto system introduced here included fluctuating intrinsic frequen-
cies and event- based feedback. Consistent with the discrete nature of time asynchronies in a drum-
ming task, the model used a pulse function instead of continuous coupling. The implications of this 
idea reach beyond the topic of the present study. The combination of continuous movement and 
discrete sensory sampling of the environment is a frequently observed scenario; in the present study, 
participants used the discrete auditory feedback of drum taps to inform their continuous movements 
leading up to future drum taps. Our task reduced the opportunity of visual coupling but did not elimi-
nate it completely, leaving the possibility that group drumming involved both discrete and continuous 
feedback such as visual information about continuous arm, hand, and drumstick movements related 
to the timing of individual drumming sounds. Future studies should address whether visual feedback 
during group drumming is informative, as well as explore how that visual information is captured 
within the individual and collective dynamics of the system.

Interestingly, in the octet group, individual variability was similar in both the synchronization- only 
condition, where the metronome pacing stimulus was present, and in the self- paced continuation 
stage of the SCT trials, where no pacing stimulus was present. This result implies that, although tempo 
accuracy and drift were superior when the pacing stimulus was present, the stability of group timing 
in a group of eight participants may hit a ceiling, where performance becomes as stable as with a 
pacing stimulus.

Individuals’ tempos tended to increase in solo trials, and as expected, this effect was amplified 
(i.e. speeding up was greater) when trying to stay synchronized with other participants (Okano et al., 
2017). Surprisingly, the amount of speeding up was not higher for larger groups of drummers, and it 
was even reduced for larger groups, at least at faster tempos. In contrast, accounts based on mutual 
prediction imply more speeding up for larger groups (Thomson et  al., 2018; Wolf et  al., 2019). 
This discrepancy highlights the importance of testing tempo drift with specific task constraints and 
avoiding hasty generalizations from smaller to larger groups. Indeed, tempo can also slowdown in 
some circumstances. This was observed, for example, in a group synchronization task when partic-
ipants synchronized their oscillations using swung pendulums, a task involving continuous visual 
coupling rather than discrete acoustic event coupling (Bardy et al., 2020).

Having summarized task performance in terms of consistency and accuracy, we next considered 
drumming dynamics. Individuals’ autocorrelations exhibited negative coefficient peaks at odd lags 
and positive coefficient peaks at even lags. This is the typical error- correction process demonstrated 
when individuals synchronize their tapping with a stimulus or with each other in pairs (Konvalinka 
et al., 2010; Repp, 2005). With increasing group size, however, the magnitudes of the autocorrelation 
coefficient fluctuations with lag decreased; individuals’ alternating patterns became smoother. This 
suggests that as group size increases, drumming dynamics are dominated less by tap- by- tap error- 
correction and more by a group dynamic. Interestingly, the group- aggregate onsets exhibited the 

https://doi.org/10.7554/eLife.74816
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same autocorrelation pattern as individuals, even in octets. This implies that the collective mean field 
behavior spontaneously acquired some of the dynamic properties typically associated with individual 
performance.

Inter- personal coordination in duets exhibited the negative cross- correlation at lag 0 and positive 
cross- correlation at lag 1 expected from past studies (Repp, 2005). The results for speeding up, vari-
ability, and cross- correlations in the dyads were consistent with the literature on dyadic interaction 
with tapping tasks. Yet, as group size increased in the present study, the coefficient magnitudes for 
cross- correlations decreased. In fact, they all but disappeared for groups of eight, suggestive of a 
leader- less group coordination scenario (Heggli et al., 2019). In a small number of trials, we even 
observed positive lag 0 cross- correlations in groups of eight, a signature of anticipation emerging from 
dynamic interaction. This result is consistent with the idea that group members coordinated less with 
each other and more with the mean field. Along with a more slowly decaying autocorrelation function, 
this suggests the emergence of a larger- scale group dynamic in the octet. As we hypothesized, mutual 
prediction is not necessarily the only basis for coordination in larger groups. The present model would 
be more like a predictive account had we included a new variable and an additional equation in the 
model,  θ̇j,i = f

(
θi, θj, θj,i

)
 , corresponding to a separate internal oscillatory process  θj,i  that individual i 

dedicates to the prediction of an external signal j. Yet, there is no reason to assume that collective 
dynamics and mutual prediction are exclusive alternatives, only that collective dynamics are a mode 
of social interaction that emerges under certain constraints such as large groups of interacting agents.

Characterizing inter- personal interaction on the basis of bivariate measures is typical in the context 
of dyadic paradigms. Larger groups, however, create the possibility for higher- order interactions. 
Network analysis was applied to the connectivity graph of TEs among drummers. Larger groups had 
lower causal density but higher node strength. This is possible because individual nodes in larger 
groups project to a larger number of other individual nodes and suggests that in larger groups, each 
individual has a decreased influence on the group, both less potential to destabilize the group and 
lower requirements to keep the group stable. We also found that higher node strength was associated 
with better overall performance, both in terms of variability and tempo accuracy.

Group timing tasks address some of the foundations of human social interaction. This area of 
research has been labeled the ‘dark matter’ of social neuroscience (Dumas et al., 2014; Insel, 2010; 
Schilbach et  al., 2013) because it has not received enough attention despite the fact that large 
parts of the human cortex respond to social stimuli (Frith and Frith, 2001). The temporal regularities 
in music make it an ideal stimulus to promote synchronous and cooperative movement, providing 
evidence as to why music is often present at emotional social gatherings such as weddings, funerals, 
parties, and political rallies. Feelings of affiliation and cooperation increase between people who have 
experienced synchronous movement with each other, even during infancy (Cirelli et al., 2014; Cirelli 
et al., 2016; Hove and Risen, 2009; Mogan et al., 2017; Trainor and Cirelli, 2015; Valdesolo et al., 
2010). The ability of music to strengthen social bonds within a group may have evolutionary roots 
that enhance survival capabilities of the group (Huron, 2001; Savage et al., 2020; Trainor, 2015). 
Arguably, the presence of a convergent regular rhythm defined over the ensemble allows individuals 
of varying skill level to perform together without having to predict each note they play, an idea that 
remained largely untested in the present study because of the relative simplicity of the isochronous 
stimulus.

Participants in group activities sometimes report a so- called state of flow characterized by absorp-
tion, loss of sense of control, loss of self- consciousness, togetherness, and effortless action toward a 
shared goal (Csikszentmihalyi, 1990; Gaggioli et al., 2017; Hart et al., 2014). Little is known about 
the underlying group processes that enable such experiences. Some of the required conditions have 
been studied in the context of group musical performance (Bishop et al., 2019; D’Amario et al., 
2018). Collective intentionality is often seen as an extrapolation of single- person cognitive processes 
in that individuals predict other individuals’ goals and actions (Tomasello, 2000, Tomasello, 2014). 
Yet, the neural and cognitive mechanisms historically identified in single- person paradigms do not 
always map onto the ontology of social behavior (Przyrembel et  al., 2012). Collective intention-
ality can stand for an independent mode of social cognition (Satne and Salice, 2018; Zahavi and 
Satne, 2015). Social cognition theory can even be turned upside- down by observing cases where 
individual agency arises from social interaction (De Jaegher and Froese, 2009; Froese et al., 2014). 
The present work shows how collective dynamics can absorb individual action.

https://doi.org/10.7554/eLife.74816
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Beyond the group average
We have argued that attraction to the group average constitutes an organizing principle that supports 
the coordinated performance of medium and large groups of individuals. There are theoretical and 
empirical reasons, however, to assume that other organizing tendencies can compete with the group 
average and potentially lead to more complicated dynamics. To begin with, our synchronization 
task was designed to foster collaboration, did not challenge individual skill, and did not create any 
incentives for competitive individual behavior. This collaborative aspect corresponds to social behav-
iors where crowds want to appear as a strong unity, for instance, when chanting a protest song or 
storming into battle. In contrast, choir singing demonstrates that both cooperation and competi-
tion are involved often in group musical performance (Keller et  al., 2017). And different players 
in musical ensembles often simultaneously play different parts with different melodic and rhythmic 
features. While these parts must fit together, reflecting cooperation, at any one point, the player of 
the ‘melody’ or most important part influences other players more than vice versa, setting up leader-
ship dynamics within the group (e.g. Chang et al., 2017). Different cultural contexts and performance 
styles may even emphasize the creative and expressive de- synchronization from the regular group 
beat, or avoid isochrony altogether, allowing musicians to unfold their own ideas or belonging to 
a specific tradition (Benadon et al., 2018; Davies et al., 2013; Lucas et al., 2011). Understanding 
musical creativity requires a situated approach and ethnographic engagement to find which features 
of the emergent collective acoustic environment constitute meaningful affordances for given musi-
cians in a given context (Linson and Clarke, 2017).

The combination of attractive and repulsive coupling among individuals is particularly evident in 
the context of collective animal behavior. The well- known Vicsek model accounts for the coherent 
heading direction in collective movement in terms of a combination of local attraction and repulsion 
forces (Vicsek et al., 1995). In chorusing animals, there is a tendency for male individuals to cluster 
their acoustic behavior in time but also to advance ahead of the cluster, presumably to have better 
chances at attracting the attention of other relevant individuals (Gamba et  al., 2016; Greenfield 
et al., 2017; Ravignani et al., 2014; Ravignani et al., 2019).

The present study focused on a scenario with uniform coupling by keeping group members close 
to each other and restricting the timbre and pitch of their drums to a very narrow range, making 
them acoustically inseparable from each other when playing synchronously. Musicians who play on 
large stages sometimes report noticeable delays amongst each other. In the present study, the delay 
was limited in the range from 4 ms to 16 ms depending on partners’ spatial separation, and the 
sound intensity drop was from 6.3 to 15.1 dB. Yet, selective attention plays an important role in 
animal chorusing (Greenfield et al., 2021). Variations in the layout of the acoustic environment, indi-
vidualized timbres, and the availability of alternative coupling modalities such as vision, all create 
affordances for selective attention and individualized roles in the ensemble. For example, low- pitch 
sounds afford better beat- based timing precision in humans (Burger et al., 2013; Hove et al., 2014; 
Hove et al., 2020). The discernability of individual sounds facilitates temporal coordination tasks, 
presumably through the involvement of neural mechanisms for self- other segregation and integration 
mechanisms (Liebermann- Jordanidis et al., 2021; Novembre et al., 2016; Ragert et al., 2014).

In conclusion, we assume that the aforementioned factors fit within the collective dynamics frame-
work as symmetry- breaking terms, complications in task space that enable more interesting stabilities 
than mere attraction to the group average. Future studies can address this idea by manipulating indi-
vidual heterogeneity, task difficulty, spatial layout, and coupling topology.

Materials and methods
Participants
A total of 102 university students participated in the duet (n=11 sessions; 22 participants), quartet 
(n=8 sessions; 32 participants), and octet (n=6 sessions; 48 participants) groups. In addition, 88 high- 
school students participated in the octet condition (n=11 sessions). Participants were recruited from 
the department’s participant pool with course credit and from local high schools as part of science 
field trips to the university. Across the set of all participants, musical training was distributed in the 
range from non- musician to amateur musician. We did not control the composition of musical skill 
within each ensemble.

https://doi.org/10.7554/eLife.74816
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Apparatus
In ensemble playing conditions, participants were seated in chairs facing each other, equally spaced in 
a linear, square, or octagon arrangement, with diagonal distances of 3 meters in the duet and quartet 
groups and 6 meters in octet group. Ensemble playing conditions were performed in a large, tall- 
ceiling dance studio, part of the LIVELab, a laboratory dedicated to auditory and movement neuro-
science (http://livelab.mcmaster.ca). In the duet and quartet groups, solo trials were recorded with 
individual participants immediately before or after the ensemble sessions in an adjacent sound- proof 
room.

In the duet and quartet groups, participants used drumsticks on plastic buckets that were damp-
ened and placed upside- down. Their fundamental frequencies varied in a narrow range (117–129 Hz). 
They are of the type seen in street- style group drumming observed in the community and were used 
previously by a group drumming workshop instructor. Piezoelectric sensor elements were taped on 
the inner side of the attack surface of each bucket. The analog signal was recorded on a computer at 
48 kHz via a multi- channel studio- grade analog- digital interface (Focusrite RedNet 4) and the digital 
audio production software Reaper (Cockos Incorporated, Rosendale, NY, USA). This setup provided 
for a clean signal with minimal noise and a sharp, high- amplitude attack that was digitized into onset 
times in Matlab using a custom algorithm with thresholding and rejection of rebounds under 150 ms.

The octet group used a set of electronic pads which, unlike the bucket drums, allowed tuning the 
drums to distinct fundamental frequencies across a larger number of individual drums. Eight iden-
tical pads (Yamaha TP70 7.5” snare/tom) and eight independent powered studio reference monitors 
(Yorkville Sound YSM5) placed under each pad were connected to the head module (Yamaha DTX 
920  K). The pads had linear amplitude response and, on impact, produced the same woodblock 
sound. The woodblock fundamental frequencies, about double those of the bucket drums, also varied 
in a narrow range (249–284 Hz). The two setups were similar as they both involved polymer impact 
surfaces and piezoelectric sensors embedded within those surfaces to detect impacts and record 
onset times. To record the electronic drums, the head module was connected to the computer which 
stored drum hits as MIDI events. The recording line was parallel to the drum set and did not contribute 
additional latency between drum impact and drum sound (5 ms). Separately, we measured that the 
recording pipeline added negligible timing variability with a SD of 1 ms relative to the ground truth 
based on a direct analog recording of the drum pad impacts.

The reference metronome that participants were asked to synchronize with was played over a dedi-
cated speaker placed in the middle between participants. A custom patch for the sound synthesis and 
production software Pure Data (Puckette, 1997) ran on the computer to generate and time a sharp 
electronic kick drum sound, with a timbre very distinct from the individuals’ drums (600 Hz sine wave 
with 250 ms duration, 20 ms amplitude attack, and 230 ms decay). The stimulus was fed back and 
recorded as an additional channel along with the participants’ drum beats.

Stimuli
The stimulus tempo of the isochronous reference metronome varied between 50 and 240 beats per 
minute (bpm) depending on condition (see below). Trials were 90  s long, and the synchronization 
phase always included 32 stimulus events. Thus, slower tempos had longer duration synchronization 
phases.

Task
Drumming is ecologically valid in terms of common musical practice, and tapping with sticks has been 
shown to improve timing relative to finger tapping (Madison et al., 2013; Manning et al., 2017). 
The task on each trial was a SCT. During the synchronization phase, participants were presented with 
trials containing a reference isochronous metronome at a particular tempo and were asked, using 
drumsticks, to: (1) synchronize with the given reference metronome, (2) keep their own variability as 
low as possible, (3) keep their drumming rate as steady as possible, and (4) synchronize with the other 
drummers when in an ensemble condition. During the continuation phase, the reference metronome 
stopped, and participants were told to continue to keep their drumming rate as steady as possible 
while synchronizing with other drummers in an ensemble. Those in the octet group also completed 
trials in a synchronization- only control task in which the isochronous metronome played for the entire 
trial (i.e. there was no continuation phase). Participants were instructed to focus their eyes on an ‘X’ 
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taped in the centers of their drums, thus reducing the visual coupling among group members in the 
ensemble conditions.

Design
Participants were assigned to one of three group sizes: duet (2), quartet (4), or octet (8). Those in the 
duet and quartet groups completed the SCT task in both solo and ensemble conditions. Duet and 
quartet groups completed six trials at each of the following tempos: 50, 80, 120, 160, 200, and 240 
bpm (or 1200, 750, 500, 375, 300, and 250 ms onset- to- onset intervals between beats) in each of the 
solo and ensemble conditions, with the order of tempos randomized. For each set of participants, 
there was random assignment to either the solo or ensemble condition first. Trials lasted 90 s with a 
synchronization phase of 32 metronome beats.

For octet groups, there were three differences in the design. First, they did not complete solo trials 
because of time and space constraints. Second, the set of tempos was slightly different (80, 100, 120, 160, 
and 200 bpm or 750, 600, 500, 375, and 300 ms intervals). Finally, an additional condition was included, 
consisting of a synchronization- only control task (i.e. with the reference metronome throughout).

We found that the very low and very high tempos led to poor performance; hence, we eliminated 
extreme tempo trials and only analyzed the set of matching tempos across dyads, quartets, and octets, 
namely 80, 120, 160, and 200 bpm (750, 500, 375, and 300 ms). See the figure supplements for the 
extreme tempo conditions. For all groups, prior to completing the trials in each condition, participants 
engaged in practicing synchronized steady drumming without an initial metronome to set the tempo so 
that participants could become familiar with the sticks and drums and playing together in an ensemble.

Procedure
After providing informed consent, filling out demographic and music background questionnaires, 
reading instructions, and observing a demonstration of the apparatus, participants were instructed 
to find a comfortable posture on their chair and adjust the drum position during practice. They were 
asked not to adjust these further during the trials. Participants were allowed to practice as needed 
to feel comfortable with the task. After each trial, the experimenter verified with the participants that 
they were ready to start drumming again before the next trial was initiated. The whole session from 
arrival to departure lasted about an hour. Before asking for informed consent, the overall goals of the 
study were explained to the participants, including that the collected drumming data would poten-
tially be presented anonymously at meetings and in scientific papers, and that the procedures had 
been approved by the McMaster Research Ethics Board.

During the solo performance in the duet condition, one participant was moved to an adjacent 
sound- proof room while the second remained in the large dance studio. For the quartet condition, 
two of the participants were randomly assigned to arrive earlier and perform their solo trials before 
the group trials and the other two to perform their solo trials after the group trials. In the octets, indi-
viduals did not perform solo trials.

Analysis
Pre-processing of onset times
Onset times were processed using custom Matlab scripts (an example script for cleaning and 
matching IOIs is available at https://gitlab.com/dodo_bird/group_sync_elife, copy archived at 
swh:1:rev:6479ed2e3409ebc156fbc917a246cf4c4edf4f44, Dobromir, 2022). In SCT trials, only data 
from the continuation phase was analyzed. In the synchronization- only control trials of the octet group, 
the full- trial length was analyzed. The following steps were taken to remove artifacts and condition the 
data according to the requirements of the analyses used.

Signal
On a few occasions, participants accidentally pulled the cable from the drum and disconnected or 
damaged the sensor. A total of 15 bad channels (i.e. participants) were detected and removed from 
further analysis with a custom script using the onset variability, signal noise, and amplitude consis-
tency. For further verification, we visually inspected the signals and onset times from all channels and 
trials.

https://doi.org/10.7554/eLife.74816
https://gitlab.com/dodo_bird/group_sync_elife
https://archive.softwareheritage.org/swh:1:dir:a203ffdbf29ac2532c1625c7aa397e43fbdb6eb4;origin=https://gitlab.com/dodo_bird/group_sync_elife;visit=swh:1:snp:7d9f1691d935937d923f4090877180af0adc599b;anchor=swh:1:rev:6479ed2e3409ebc156fbc917a246cf4c4edf4f44


 Research article      Neuroscience | Physics of Living Systems

Dotov et al. eLife 2022;11:e74816. DOI: https://doi.org/10.7554/eLife.74816  17 of 26

Group-aggregate (mean field) measure for ensembles and 
pseudo-ensembles
For ensemble trials, we created a measure of the beat onset times of the group as a whole by 
constructing theoretical group- aggregate onsets in the center of clusters of individuals’ onset times, 
tn,g, where n is the beat onset number, and g signifies it is the group- aggregate onset. Specifically, we: 
(1) convolved onset times with a Gaussian kernel 200 ms in width, (2) smoothed the resulting group 
activity rate with a moving average window of a quarter of the reference stimulus beat onset- to- onset 
time, and (3) took the peak locations for group- aggregate beat onset times (see Figure 8). This algo-
rithm, typically used in neuroscience to extract a firing rate or population activity from the spike times 
of multiple recorded units (Dayan and Abbott, 2001), provides a measure of the central tendency of 
one or more events clustered in time. The method does not necessarily restrict the group- aggregate 
pattern to one average onset because if a single onset time is isolated away from other clusters, for 
example, when a participant erroneously hits the drum while the other participants were silent, it 

Figure 8. Group- aggregate onset times from convolving the drummers’ onsets with a Gaussian kernel.

https://doi.org/10.7554/eLife.74816
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will also be detected as a single- event cluster. Such events of large individual deviations from the 
group were very rare in the present study and eliminated from analysis because, overall, participants 
performed the task consistently and in agreement with group members. Group- aggregate beat onset 
times were calculated for each trial in each group during ensemble playing conditions. In solo trials of 
dyads and quartets, participants could not see or hear each other, but we computed onset times of 
the pseudo- group- aggregate for a baseline.

From beat onset times to IOIs, outlier removal, and clustering
For each trial for each participant, the sequence of onset times tn,i, where i is participant and n onset 
number, was differenced to produce a time- series of inter- onset- intervals, IOIn,i=tnn,i – tn−1,i. Where 
appropriate for a more intuitive interpretation, we expressed these as tempos, Tn,i=60/IOIn,i. The 
same procedure was carried out to obtain the time- series of IOIs for the group- aggregate measure in 
ensemble conditions and the pseudo- aggregate measure in solo playing conditions.

If a participant skipped a beat on a certain occasion, this would produce an outlier IOI twice as 
large as most others in the trial, thus biasing subsequent measures. IOIs exceeding 50% difference 
above or below the trial median were removed. The measures of individual variability and tempo 
trend (see below) were based on these IOIs.

Alignment of IOIs
Quantifying inter- personal coordinated tapping with the cross- correlation requires pairing IOIs from all 
participants in a given trial. To this end, we used a custom algorithm to detect IOIs that were matching 
across all group members. To illustrate, if one group member skipped a beat, the produced IOI was 
about double that of the others, and the corresponding IOIs for all group members were removed.

Pre-whitening
Cross- correlations are difficult to interpret in the presence of non- stationarities such as slow drift up 
and down of the IOI. We applied a method for removing such non- stationarities by pre- whitening 
the IOIs (Dean and Dunsmuir, 2016). Specifically, each time- series of IOIs was filtered using an auto- 
regressive model with coefficients estimated with automatic model- order selection (‘pre- whiten’ func-
tion from the time series analysis package TSA for R).

Performance measures and dynamics
All subsequent measures were based on the individual participants’ timing data. For the sake of char-
acterizing overall group performance, the group- aggregate timing was analyzed in the same way as 
was individual participant timing and reported as a separate condition.

Variability and tempo trend
The tempo trend was defined as the linear trend of IOIs along successive beats in a trial. The slope b 
in the regression equation Tn,i=a + bni was fitted separately in each trial for each individual. The vari-
abilities of each individual and group- aggregate were estimated separately using the coefficient of 
variation of their de- trended and pre- whitened IOIs.

Autocorrelation
Individuals’ and group- aggregate dynamics were analyzed using autocorrelation of IOIs.

Inter-personal coordination
Cross-correlation
The temporal pattern of co- variation among participants was analyzed using cross- correlation applied 
to the pre- whitened IOIs.

Transfer entropy
The bidirectional interaction between every pair of participants in a group was measured using TE 
(Schreiber, 2000). This is an information- theoretic measure of directed mutual information used for 
quantifying the effective connectivity in, for example, moving animals (Brown et al., 2020), sensori- 
motor and motor- motor interactions (Dotov and Froese, 2018; Lungarella and Sporns, 2006; 
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Stoffregen et al., 2009), and complex networks of neurons (Gourévitch and Eggermont, 2007). 
Effective connectivity, sometimes also referred to as causality, is understood in the Wiener sense that 
having information about past source dynamics improves the prediction of future target dynamics 
(Wiener, 1956). We used a Matlab toolbox for TE (Ito et al., 2011) adapted for point processes such 
as neuronal firing times where a delay d separated the source (J) and target (I) dynamics are binary 
events,  TEJ→I(d) =

∑
p(it+1, it, jt+1−d)log2

p(it+1|it,jt+1−d)
p(it+1|it)  . The t indices here are bins of time, set to 10 ms. 

We took the maximum TE over a range of up to 100 delay steps (i.e. 1 s). We performed the analysis 
either with or without removing the trend of decreasing intervals between time indices in a trial (i.e. 
trend for tempo to speed up) and found this did not change the pattern of results.

Arguably, TE has several benefits over comparable methods (Lungarella et al., 2005). We iden-
tified another reason for applying TE to the sequence of time onsets t rather than what would be 
the first choice historically, namely TE or Granger causality among sequences of IOIs paired across 
participants. The latter scenario involves several steps of subtractive pre- processing consisting of 
removing outliers due to missed taps, pruning and aligning observations across participants, and 
filtering smooth trends that could be intrinsic to the performance, whereas applying a version of TE 
for point processes (sequences of onsets) avoids the steps which risk excessive data removal.

Network analysis
The measures in Performance measures and dynamics are univariate and describe drumming perfor-
mance of individuals. This individual- level analysis does not say much about how participants coor-
dinate with each other to achieve group performance. Inter- personal coordination lists bi- variate 
measures typically used to analyze dyadic tapping and sensorimotor coordination problems. Yet, even 
such pair- level analysis is not sufficient in the group context where more than two participants coor-
dinate simultaneously with each other. Hence, we obtained group- level measures by analyzing the 
network of effective connectivity among drummers (Newman et al., 2011). Drummers were treated 
as nodes (or vertices) and TE values as the weights of links (or edges) of a directed graph.

Causal density and mean node strength
Among the rich set of phenomena that potentially can be quantified in a large network, only a few 
measures are relevant in the present context because of the low number of nodes and the real- valued 
nature of the graph consisting of continuous connection weights rather than binary links. We defined 
causal density as the average of all edge weights (Seth et al., 2011; Seth and Edelman, 2004). Mean 
node strength (Barrat et al., 2004), obtained using the igraph package for R (Csardi and Nepusz, 
2006), was defined as the average across drummers of each drummer’s total outbound connectivity. 
This is a version of the more popular measure of node degree which is used for binary graphs.

Statistical analyses
Linear mixed effects models (Bates et al., 2015; Singer and Willett, 2003) were used instead of 
ANOVAs because of the complex, unbalanced design and missing observations. By taking different 
subsets of the data and fitting separate models, we tested for: (1) effects of group size in SCT trials 
comparing dyads, quartets, and octets, (2) differences between solo and ensemble playing condi-
tions in dyads and quartets, (3) differences between SCT and synchronization- only in octets, and 
(4) differences between individual and group- aggregate performance. For brevity, only the selected 
model with best fit is reported in Results. The modeling procedure was incremental, starting with the 
minimal specification of a grand mean and iteratively including predictors and their interactions until 
the model became over- specified or too complex to converge, which tended to be the case when 
including tempo. The Satterthwaite method was used to determine significant effects and interactions 
(Kuznetsova et al., 2017). Effect sizes are given by the ω2 (Ben et al., 2020).

Model parameters
We simulated 100 runs per condition and each run corresponded to a trial with duration of 100 s. We 
used a sampling rate of 300 Hz and a third- order solver. Different sampling rates and using solvers 
with the Euler method or with an adaptive step size produced similar results. Performance variability 
was measured in terms of the coefficient of variation of cycle durations, treating zero- phase crossings 
as onset times, reproducing the behavioral data qualitatively. The pulse in Equation 5 with parameters 
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a=1.25 and b=0.02 specifies an asymmetric gamma distribution that rises sharply at time 0 and then 
decays slowly in about 200 ms. The code needed to run the full simulation is available at https://gitlab. 
com/dodo_bird/group_sync_elife.

Conditions consisted of the full crossing of group size N=(2,4,8) with coupling strength (K=0 in solo 
and K=8 in ensemble). The noise term had a mean of zero and variability σ=6. Intrinsic frequencies ωi 
were drawn from a normal distribution with a mean of 2 Hz and SD of 0.5. Comfortable finger tapping 
in humans is in the range 1.5–2 Hz (McAuley et al., 2006), tapping is optimally precise in the range 
0.8–2.5 Hz (Moelants et al., 2002), and walking cadence on average is at 2 steps/s (MacDougall and 
Moore, 2005).
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