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Recent research into how musicians coordinate their expressive timing,

phrasing, articulation, dynamics, and other stylistic characteristics during

performances has highlighted the role of predictive processes, as musicians

must anticipate how their partners will play in order to be together. Several

studies have used information flow techniques such as Granger causality

to show that upcoming movements of a musician can be predicted from

immediate past movements of fellow musicians. Although musicians must

move to play their instruments, a major goal of music making is to create a

joint interpretation through the sounds they produce. Yet, information flow

techniques have not been applied previously to examine the role that fellow

musicians’ sound output plays in these predictive processes and whether

this changes as they learn to play together. In the present experiment, we

asked professional violinists to play along with recordings of two folk pieces,

each eight times in succession, and compared the amplitude envelopes of

their performances with those of the recordings using Granger causality to

measure information flow and cross-correlation to measure similarity and

synchronization. In line with our hypotheses, our measure of information flow

was higher from the recordings to the performances than vice versa, and

decreased as the violinists becamemore familiar with the recordings over trials.

This decline in information flow is consistent with a gradual shift from relying

on auditory cues to predict the recording to relying on an internally-based

(learned) model built through repetition. There was also evidence that violinists

became more synchronized with the recordings over trials. These results

shed light on the planning and learning processes involved in the aligning of

expressive intentions in group music performance and lay the groundwork for

the application of Granger causality to investigate information flow through

sound in more complex musical interactions.
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1. Introduction

Coordination through social interaction, including the

ability to coordinate movements with others in time and space

(joint action) underpins many complex, cooperative tasks that

are unfeasible for individuals acting alone (Sebanz et al., 2006).

In humans, action synchronization can increase cooperation,

trust and prosocial behavior (Hove and Risen, 2009; Marsh et al.,

2009), even in infants (Cirelli et al., 2014). Acting in concert

with one another has enabled many cultural and technological

advancements that would have been impossible otherwise

(Cosmides et al., 2010; Tomasello, 2014). Benefits conferred by

successful coordination in the challenges of everyday life may

explain how these abilities developed in humans, and why group

activities such as team sports and ensemble music performance

are ubiquitous across cultures and throughout history (Axelrod

and Hamilton, 1981; Morley, 2002).

Group music performance is a unique form of social

interaction in that it requires a high degree of coordination

among individuals. Typically, ensemble musicians share (or

evolve) a common aesthetic goal that requires communicating

the musical structure and their expressive intentions to each

other and to their audience (Keller, 2014). Often this is achieved

through the coordination of multiple distinct musical parts

played simultaneously. At least in the Western classical musical

tradition, to achieve a cohesive musical product, musicians must

continually agree on or negotiate a set of shared expressive

intentions and coordinate their actions to communicate them.

This requires an awareness on the part of each performer of how

and what their co-performers are playing—they must agree on

or negotiate (often non-verbally) the character of the music they

wish to convey because no individual part is heard in isolation.

In the Western tradition, a collective musical expression from

multiple separate parts requires temporal alignment of both note

onsets (the precise timing of when notes are to be played),

and the expressivity or character with which a piece is played.

Expert musicians exert a large degree of control over the sound

of any one note or sequence of notes by making continual

adjustments to how they play their instruments. On the level

of the performance, this translates to phrasing and articulation,

dynamics (intensity), expressive timing, the use of vibratos,

caesuras, and fermatas, and many other stylistic features of a

performance—all of which unfold over time but are not strictly

aligned with the musical beat.

While the musical context, as well as complexity, familiarity,

and the musicians’ expertise, can affect how alignment of

expressive intentions takes place (Keller, 2014), it fundamentally

entails a type of non-verbal communication in which musicians

sense each others’ actions to infer their musical intentions.

By analogy, when two friends move a couch together, they

communicate when and where they intend to move it through

a haptic channel (the couch itself). Musicians, on the other

hand, communicate their intentions largely through auditory

and visual channels by watching and listening to each other play

(even if the notes themselves are predetermined). Musicians’

ancillary body movements—those not related to the functional

purpose of producing the notes themselves—can serve a

communicative purpose, signaling visually how and when to

play (Wanderley et al., 2005; Pezzulo et al., 2019). Gestural

motion, eye-gaze, facial expressions, head motion, and body

sway (movements not directly related to producing sound)

have all been shown to play communicative and expressive

roles in group performances (Wanderley et al., 2005; Davidson,

2012; Chang et al., 2017; Bishop et al., 2019a). One study of

qualitative observations from video recordings found that a

piano duo increased their eye-contact and gestural cues (hand

movement and torso-swaying) during “musically important”

periods of performances (Williamon and Davidson, 2002), and

another showed that gestural cues in leading violinists and

pianists indicated tempo and beat positions (Bishop and Goebl,

2018). Noticing and interpreting micro-variations in the sounds

and movements produced by fellow musicians—and indeed

acting to produce them—is necessary for ensemble members

to coordinate their actions in the pursuit of their shared

aesthetic goals.

This automatic interpretation of sensory signals from other

performers makes ensemble performance a valuable context

within which to study non-verbal communication and the group

coordination that it makes possible (D’Ausilio et al., 2015).

Ensemble musicians exchange sensory information within a set

of physical constraints (those inherent to playing an instrument)

and rule-based constraints of the musical conventions, style, and

genre. These conditions allow for tightly controlled experiments

within naturalistic settings that are easily repeatable and can be

adapted for different size groups, from duets, quartets, and jazz

bands to full symphony orchestras.

While large orchestras usually benefit from an external

timekeeper (a conductor who communicates tempo, dynamics,

and other stylistic aspects of a performance to all the

musicians simultaneously), smaller ensembles such as string

quartets function as self-managed teams wherein each member

contributes and group cohesion is particularly important for

success (Murnighan and Conlon, 1991; Cohen et al., 1996;

Davidson and Good, 2002; Luck and Toiviainen, 2006).

Although the four members in a standard string quartet (first

violin, second violin, viola, and cello) generally occupy different

roles (the first violin most frequently functions as the “leader”),

they are all responsible for arriving at a shared interpretation

of the score and coordinating their playing to convey it. This

means not only negotiating the expressive characteristics of the

music, but also aligning their notes in time. One way musicians

can accomplish this is by setting up explicit leader-follower

relationships. This places more responsibility on one of the

performers at any one time to set the tempo and convey dynamic

changes and other expressive characteristics. Indeed, when a

member of a string quartet is assigned as leader, they tend to
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exaggerate their bow movements (Timmers et al., 2014) and,

compared to followers, leaders’ head movement acceleration

better indicates the beat (Bishop and Goebl, 2018). Even brain

activity differs between leaders and followers (Novembre et al.,

2014; Vanzella et al., 2019). To some extent, the other musicians

may react to the sounds and movements of the leader once they

hear and see them, but because it takes time to plan motor

movements, relying on a reactive strategy such as this would

leave the musicians out of sync with the leader. A more effective

strategy for playing synchronously would be to anticipate fellow

musicians’ actions and sounds before they occur, and to plan

their own in accordance with how they predict their partners will

play (Sebanz and Knoblich, 2009; Moore and Chen, 2010).

Leadership dynamics in string quartets and orchestras have

been studied in the context of how musicians use the sway of

each other’s bodies to predict how they will move next using

Granger causality (e.g., D’Ausilio et al., 2012; Chang et al.,

2017; Hilt et al., 2019). Granger causality (GC) is a measure

of directed functional connectivity that quantifies how well

information contained within the past of one time series (e.g.,

body sway of one musician) helps predict the current value

of another (e.g., body sway of a second musician) based on

vector-autoregressive (VAR) modeling (Granger, 1969). One

time series is said to “Granger-cause” another if its history

helps predict the time series’ current value above and beyond

prediction based on that time series’ own history. When this

is the case, information is said to flow from one time series to

another. While such a measure cannot rule out the existence

of a hidden variable that is driving the “causality,” it is a useful

tool for examining prediction, and is sometimes referred to

as “Granger prediction” to avoid the implication that causality

is necessarily involved (Cohen, 2014). Nevertheless, the ability

of one time series to predict another implies some form of

communication must have taken place, an area of inquiry to

which GC has been successfully applied. GC has proven to

be a useful tool for quantifying the communicative capacities

of body motion among skilled musicians in several studies of

string quartets. Badino et al. (2014) measured GC between head

movement time series of all four members of a string quartet

while introducing perturbations known only to the leader.

The total inter-group communication, as measured using GC

between all the members, increased during periods following the

perturbations, and when playing more complex pieces. Chang

et al. (2017) found that the body sway of secretly assigned leaders

in a string quartet influenced that of followers more than vice

versa, and more than followers influenced each other. Assigning

different members of the quartet as leader changed their relative

predictive influences on the other members.

The cognitive processes that underlie inferring and

predicting a partner’s goals and actions have been proposed

to stem from “common coding” (see Prinz, 1990), which

hypothesizes a functional relationship between the perceptual

and motor systems (Prinz, 1997; Schütz-Bosbach and Prinz,

2007). Perceiving another’s actions can affect the performance

of one’s own related actions. For instance, reaction times of

participants making perceptual judgments in a dual-choice

button-press task show a similar compatibility effect compared

to a those for a go-nogo task in the presence of a partner making

complementary button presses, suggesting that one’s own

actions and the complementary actions of another are similarly

represented (Sebanz et al., 2003). In a study comparing solo

and duo conditions in a dot-stimulus tracking task, Knoblich

and Jordan (2003) found that the presence of auditory cues

regarding a partner’s actions enhanced group performance. The

ability for musicians to continually arrive at shared musical

goals may rest on such perception-action links whereby partners

simulate each other’s intentions (Knoblich and Sebanz, 2008;

Keller et al., 2014). In essence, they rely on or evolve shared

musical (sound-based) goals to develop a dynamic internal

representation of their partner’s actions that can be used to

make predictions about their partners’ musical goals (Sebanz

and Knoblich, 2009).

The ability to make predictions based on sound alone

has been shown to be important for coordinating precisely

during performances. One study of piano duos found that the

ability to imagine sounds produced by others before hearing

them (anticipatory auditory imagery) correlated with body

movement coordination quality measured using motion capture

(Keller and Appel, 2010). Another study found that individual

differences in auditory prediction abilities modulated accuracy

in an interpersonal sensorimotor synchronization task involving

tapping with a partner (Pecenka and Keller, 2011).

Most examinations of sound-based prediction and

synchronization in ensembles have focused on how musicians

precisely synchronize the timing of their notes (e.g., by

measuring the interval between note onsets of two or more

musicians). This approach is particularly well-suited to

percussive instruments such as pianos for which note-timing

information is easily accessible (e.g., viaMIDI recordings). Note

onset asynchronies between two pianists have been used to

show that decreasing auditory feedback decreases interpersonal

synchronization (Goebl and Palmer, 2009), and that familiarity

with a co-performer’s part affects synchronization on short

time-scales (keystrokes) and long time-scales (bodymovements)

differently (Ragert et al., 2013). MacRitchie et al. (2018) used

mean absolute asynchronies between pianists’ notes to tease

apart how incongruencies between individual and joint goals

differentially affect synchrony. However, with non-percussive

instruments, musicians can continuously vary the sound of

their instrument, including on time scales shorter than single

notes. For example, in stringed instruments, pitch and dynamics

(loudness) can change markedly within the duration of one

bow stroke, and wind instruments can expressively vary sound

characteristics including timbre and vibrato on a continuous

basis. Despite this, few studies have examined how musicians

make predictions based on the continuous sounds produced
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by their fellow musicians, and fewer still have used measures

of information flow. Granger causality (GC) (Chang et al.,

2017) and mutual information (Ragert et al., 2013) have been

applied to body movements, but information flow between the

continuous sounds of performing musicians remains essentially

unstudied. To our knowledge, GC has not been used to date

to study information flow between musicians’ musical sound

outputs, although it has been used to analyze influences of

acoustic properties on perceptual responses (Dean and Bailes,

2010; Bailes and Dean, 2012).

One goal of the present study was to examine whether

musicians anticipate what a partner will play solely based on

the immediate past of the sounds produced by that partner,

by applying GC to the time series of the musicians’ audio

outputs. At least one study suggests indirectly that this may be

the case. Examining GC between the body sway movements

of the musicians in a string quartet, Chang et al. (2017) found

that even when the musicians could not see each other, the

body sway of one musician influenced the body sway of the

others (and information flow from the body sway of leaders to

followers was greater than vice versa). Given that they could

not see each other, body sway could not have been the direct

communicative cue. Rather, body sway likely reflects musicians’

planning processes related to the sounds they are producing,

similarly to how hand gestures reflect planning of speech

(Graham and Heywood, 1975; Morsella and Krauss, 2004), and

the musicians’ sounds themselves contained cues for predicting

how each other planned to play in the future. If so, these cues

must be present in audio recordings of musical performances.

We based our analyses on the audio amplitude envelope, a time

series consisting of a smooth curve that tracks variations in

amplitude (intensity or loudness) over time. We focused on

the amplitude envelope because it encodes time-variant acoustic

properties of the sound signal.

A second goal of the present study was to examine how

auditory-based prediction processes change as a musician

becomes familiar with (i.e., learns) to mimic another musician.

In this regard, a prominent framework of social interaction

involves the idea that co-actors form (learn) internal models that

simulate the link between motor commands and their sensory

consequences across the co-actors (Wolpert et al., 2003). In this

framework, when musicians share a common forward (causal)

internal model, this allows them to predict each other’s actions

and their sensory consequences (sounds), enabling them to play

synchronously (Heggli et al., 2019). When they accomplish this,

the sounds they produce coordinate, and they can arrive at

a joint musical expression. According to this framework, we

expected that in learning to play a piece together, musicians

would initially rely on predictive cues from the movements

and/or sounds of the other musicians, but that with practice,

the musicians would come to a common musical interpretation,

thus forming common internal models. They would then rely

less on direct predictive cues through seeing or hearing each

others’ movements or sounds. Indeed, there is evidence that

average GC based on body sway decreases as musicians learn

to play a piece together (Wood et al., 2022), and that rehearsal

improves movement coordination among piano and clarinet

duos (Bishop et al., 2019b). In the present study, we measured

Granger causality when sound was the only communicative

cue present.

To control the auditory cues present during learning, in

the present study, we examined how violinists learn to play

with prerecorded pieces containing large amounts of expressive

liberty by having them play with each prerecorded violin piece

eight times in succession. In this scenario, the only information

available for the creation of an internal model of the expression is

the sound recording. Our main hypothesis was that the violinists

would initially relymainly on predictive processes based on what

they were hearing in the recording—for example, predicting

the dynamics and expressive timing of the prerecorded violinist

based on their immediate past dynamics and expressive timing

as the piece unfolded in time. Over successive playing with

the recording, if violinists formed improved internal models

of the expressive interpretation of the music on the recording,

we would expect them to rely more and more on predictions

based on their internal models and less and less on predictions

based on the sound itself. We therefore expected that an analysis

of Granger causality would show a decrease in information

flow from the recording audio to the violinists’ audio across

repetitions as the violinists learned how the musician on the

recording interpreted the piece.

In addition to information flow, we measured the similarity

of amplitude envelopes of the violinists’ performances and the

recordings across pieces and repetitions using cross correlation

(CC). CC measures the correlation between two time series

across time-delayed (“lagged”) copies of one another within a

range of positive and negative lags. The CC measure is taken to

be the largest CC value across the range of lags. To some degree,

CC and GC are complementary measures because information

can only flow between time series that are sufficiently dissimilar

from one another; Granger causality between two identical

time series will necessarily be zero because the second time

series cannot add additional information that is not already

represented in the first time series. However, both GC and CC

are directional measures to an extent. For example, information

flow would be expected to be higher from the recording to the

violinist than vice versa as the violinist should not be able to

influence the recording. Similarly, the sign of the lag at which

the largest CC value occurs suggests the temporal precedence

between the two time series. While the calculation of CC does

not rely on statistical prediction like GC, if one process (e.g., the

recording) influences another (e.g., the violinist’s performance),

we would expect a high CC value to occur when the performance

lags behind the recording, and not vice versa. It should be noted

that CC does not measure how synchronous the time series are

but rather how similar they are. One measure of synchrony is
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to measure CC with a zero lag (when the two time series are

positioned together in time).

In sum, first, we expected GC values to indicate higher

information flow from the recording to the performances than

vice versa across all trials. Second, because the recording was

initially unfamiliar, we expected information flow from the

recording to the performances to decrease over successive trials

as the violinists became familiar with what they were attempting

to match; the more information about the piece they could

rely on obtaining from memory (an internal model), the less

information they should need from hearing the recording while

playing. Third, we expected CC similarity to be highest at

lags for which the recording preceded the performances and,

fourth, for both similarity and synchrony measures between the

recording and the performances to increase across trials as they

memorized the expression of the recording and learned tomatch

it more effectively.

2. Materials and methods

2.1. Participants

We recruited nine professional violinists (five female) from

around the Hamilton, ON area and one from Arizona, USA,

willing to participate in a remote study and record themselves

at home. All participants reported that they performed in a

professional capacity in orchestras or chamber music groups,

and they all had obtained professional music-related academic

degrees (e.g., Bachelor of Music Performance, Master’s Degree

in Music). Most participants also reported playing in solo

performances, and some had their own teaching practices or

recording studios. They had an average of 36 years of musical

experience (SD = 9.6) on their primary instrument (violin for all

except one whose primary instrument was viola) and practiced

for an average of 18 h per week (SD = 13.9) at the time of

data collection.

2.2. Stimuli

We sourced recordings of the popular folk tunes Danny

Boy (Piece 1) and In The Garden (Piece 2) from the website

www.violinsolos.com, played on solo violin, with accompanying

sheet music. We looked for expressive performances so that

there was some unpredictability; the performer loosely followed

the sheet music, while incorporating tempo shifts, dynamic

changes, caesuras, and fermatas. Danny Boy was chosen for the

familiarity of its melody (all the participants had heard the song

before), and relative simplicity. This rendition was played at∼55

beats per minute in 4/4 time (with one beat equal to one quarter

note) in the key of F-major. We chose the second piece to be less

familiar (no participants reported having heard the song before)

and played at a faster tempo but in a similar expressive way.

In The Garden was performed at ∼130 beats per minute in 6/8

time (with one beat equal to one eighth note) in the key of B-

flat major. This piece was slightly more complex in including

double-stops. For both pieces, we removed all markings from

the sheet music, including dynamics and bowing, so that it

contained only the clef, key signature, time signature, barlines,

and notes (see Supplementary materials for the sheet music).

The stimulus recordings were created using Studio One 3

(Presonus Audio Electronics, 2020). The first ∼90 s of each

song was extracted. For each song, eight consecutive identical

trials were presented, each consisting of the 90-s excerpt. Voice

instructions between each trial indicated that there would be a

15-s period of silence before the pickup clicks for the next trial

began. Danny Boy included five clicks (one full measure plus the

first beat of the measure in which they started playing) preceding

the initial three pickup quarter notes of the piece, and In The

Garden included eight clicks (six eighth note clicks to represent

one full measure plus two clicks each representing dotted quarter

notes in the measure in which they started playing) preceding

the initial pickup eighth note of the piece. The pickup clicks

indicated only the starting tempo of the pieces. The entire data

collection process for each piece lasted ∼15 min. Full stimulus

tracks for both pieces (mixed down as monophonic 16-bit WAV

files at 44.1 kHz sampling rate) and accompanying sheet music

were sent to violinists in advance, with instructions not to listen

to them or play them prior to conducting the experiment. In

addition, we created a “practice version” of the stimulus using a

different solo violin recording,Amazing Grace, performed by the

same musician and presented during practice trials in the same

way as the other pieces were presented in the experimental trials.

We used the practice trials to test participants’ recording setups

and to familiarize them with the procedure. All the violinists

played Danny Boy before playing In The Garden. See Figure 1

for a depiction of the experimental setup.

2.3. Data collection

Seven of the nine total violinists recorded themselves playing

both pieces, one additional violinist played only Danny Boy

(Piece 1), and another additional violinist played only In The

Garden so that each piece was played by eight violinists in

total. Data were collected at violinists’ homes with their own

recording hardware and software. Most recorded their sound

using a desktop microphone connected to a USB audio interface

while simultaneously listening to the stimulus violin track.

Because Granger Causality requires the time series of the

stimulus track and the participants’ recording to be temporally

aligned, it was crucial to synchronize the recording of each

violinist’s performance with the presented audio. The violinists

imported the stimulus WAV files we sent them into their

recording software (Audacity, Logic Pro, GarageBand, Studio
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FIGURE 1

Experimental design and procedure. The violinists listened to the recordings through headphones while looking at the sheet music (top) and

recorded themselves playing along with them (bottom) across eight successive trials. We then calculated Granger causality in both directions

(from the recordings to the performances, shown in purple, and from the performances to the recordings, shown in green) and

cross-correlation (for similarity and for synchrony, shown in blue) for each trial separately.

One, Reaper, or Avid ProTools) as one track and made a second

track to record themselves. They then recorded themselves

playing into the second track (at 44.1 kHz sampling rate)

while listening to the first track through headphones. In most

cases, participants used wired, non-noise-canceling headphones

(open-back headphones or in-ear buds) so they could also hear

the sound of their own instrument over the recording. They

recorded all eight trials in succession in one take (see Figure 1).

They then mixed down both tracks as separate 16-bit WAV files

and sent them back to us. Using the same set of time markers for

each piece, we cut each participant’s performance and recording

files into separate tracks for each trial (the recording for each trial

began at the beginning of the participants’ playing and excluded

the pickup clicks). Theoretically, each stimulus track should be

exactly the same, but we analyzed versions exported directly

from the violinists’ own recording software to account for

differences in track levels and other software-specific settings.

This resulted in 16 WAV files for each of eight participants for

each of two pieces.

2.4. Data analysis

2.4.1. Amplitude envelopes

Waveforms were extracted from the WAV files as

time series using the SciPy package for Python. They

were rectified (absolute value taken) and filtered twice,

once forward and once backward, using a 3rd order

Butterworth IIR filter with a critical (cutoff) frequency

of 11.025 kHz (half the Nyquist frequency, with the 44.1

kHz sampling rate), resulting in arrays that represented

the amplitude envelope time series with the same length

as the waveforms. The arrays were saved as text files and

then downsampled to ∼8 Hz (5,513 points) by averaging

the time points within consecutive, non-overlapping

125-ms windows.

2.4.2. Granger causality

We calculated the magnitude of Granger causality (GC)

from the amplitude envelope time series of the recordings

to the amplitude envelope time series of the performances—

and vice versa—for each participant and each trial following

the procedure implemented in the Multivariate Granger

Causality (MVGC) Toolbox for MATLAB (Barnett and Seth,

2014). All time series met the assumption of stationarity

required for GC. An optimal model order (the number

of past points in the time series included in the model)

was chosen for each trial for each participant using the

Akaike information criterion. Then, for each participant

for each piece, the maximum model order out of their

eight trials was used to calculate GC values for all eight

trials. In other words, model orders were specific to each

participant and piece, but within a participant, the same

model order was used for all trials of the same piece.

The average model order for participants when playing

Danny Boy was 6.63 (SD = 0.52), which corresponded to

0.829 s. The average model order for participants when

playing In The Garden was 8.63 (SD = 1.41), which

corresponded to 1.079 s.

Frontiers inHumanNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2022.982177
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Klein et al. 10.3389/fnhum.2022.982177

2.4.3. Cross-correlation

To measure the similarity between the sounds of the

violinists’ performances and the recording they followed,

we calculated cross-correlations (CC) between the amplitude

envelope time series of the recordings and the performances for

each trial for each participant. CC coefficients were calculated

across the entire waveforms for each trial for lags between −10

and 10 points (10 points amounts to 1.25 s; approximately the

duration of three eighth notes in each piece, corresponding

to about 1.5 beats for Danny Boy and three beats for In The

Garden). The maximum of the coefficients across all time lags

was taken as the CC value for each trial, resulting in one

cross-correlation coefficient for each trial for each participant.

Because this CCmeasure evaluates similarity but not necessarily

synchrony between the recording and performer (maximum

correlations could have occurred at any lag within our range), we

repeated the CC analysis while confining the time lag to zero and

used this as a measure of phase alignment or synchrony between

the two amplitude envelopes.

The lag at which the maximum correlation occurred

(optimal lag) in each trial indicates the time delay between the

two time series that produced the highest degree of similarity.

A positive optimal lag indicates that the time series were

most similar when the recording preceded the performance,

and vice versa for a negative optimal lag. An optimal lag of

zero indicates no temporal precedence between the time series

(i.e., synchrony).

3. Results

3.1. Information flow direction

We compared the GC values in the two directions

(performance to recording; recording to performance) within-

subjects for each piece separately (see Figure 2). GC values from

the recording to the performance were larger than from the

performance to the recording across all trials for Piece 1 (Danny

Boy), t(63) = 7.038, p < 0.001, and for Piece 2 (In The Garden),

t(63) = 9.659, p < 0.001. These results are as expected; because

the recording was fixed, information was expected to flow from

the recording to the performance rather than the reverse. This

establishes that information flow between the musical output of

two violinists can be meaningfully measured.

3.2. Changes in information flow across
trials

The violinists became more familiar with the recordings

after each successive trial. To test the effect of trial on

information flow, we modeled GC (only from the recording

to the performance) as an outcome variable in a linear mixed

effects model using the “lme4” package in R version 4.2.1 for

each piece separately, as the pieces differed in tempo, note

density and other structural features. The maximum likelihood

approach uses ANOVA to compare full and reduced mixed

models. Our full model included trial (eight trials) as a fixed

effect, and participant (eight participants) as a random effect.

The reduced model was identical except that it excluded the

fixed effect of trial. The coefficient estimates of trial for Piece

1 were β = −0.005 with semi-partial R2 = 0.225 and, for

Piece 2, β = −0.003 with semi-partial R2 = 0.199. Both were

statistically significant (p < 0.001). This indicates that GC

decreased significantly across trials from the recording to the

performance (see Figure 3).

To examine the nature of the decrease in GC values across

trials, we ran a set of linear contrasts (comparisons) including

all eight levels of trial (as a quantitative ordered factor). This

revealed a significant decreasing linear trend of GC for Piece 1,

F(1, 56) = 9.819, p = 0.003, and for Piece 2, F (1, 56) = 4.141,

p = 0.047, indicating a linear decrease over trials in both cases

as hypothesized.

3.3. Changes in similarity and synchrony
across trials

We modeled the CC coefficients as fixed effects of trial and

random effects of participant, using the same full and reduced

models as for GC, except with the maximum CC coefficient

for each trial as the outcome variable. Coefficient estimates of

trial were significant for Piece 1 (β = 0.005, semi-partial R2 =

0.069, p = 0.046), and trending significant for Piece 2 (β = 0.005,

semi-partial R2 = 0.062, p = 0.057). Linear contrasts identical

to those for GC were also run on the CC values, but neither

piece produced a significant linear trend [for Piece 1, F(1, 56)

= 0.357, p = 0.553, and for Piece 2, F(1, 56) = 0.887, p = 0.350;

see Figure 4A].

Our measure of maximum CC coefficient for similarity,

above, (using a lag window of ±1.25 s) does not necessarily

capture phase alignment or synchrony between the two times

series as the maximum CC value may occur when the two

time series are lagged with respect to each other. To examine

synchrony, we restricted the lag to 0 and re-ran the same CC

analysis. The linear mixed model estimate of trial was significant

for the Piece 1 (β = 0.006, semi-partial R2 = 0.087, p = 0.024) and

for Piece 2 (β = 0.007, semi-partial R2 = 0.146, p = 0.003). As for

the similarity analysis, neither piece exhibited a significant linear

trend with 0 lag [for Piece 1, F(1, 56) = 0.519, p = 0.474 and for

Piece 2, F(1, 56) = 2.135, p = 0.150; see Figure 4B].

There were no significant differences across trials for what

lags produced the maximum cross-correlations (optimal lags).

Importantly, average optimal lags were almost all positive or

zero (98.5%) for both pieces for all trials, indicating that
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FIGURE 2

Granger causality values for both directions, recording to performance and performance to recording, for Danny Boy (A) and In The Garden (B).

The lines show how each participant’s GC values changed between the two directions for Trial 1 and Trial 8.

FIGURE 3

Granger causality (GC) values in both directions for each piece separately across the eight trials. Error bars represent standard error.
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FIGURE 4

Cross-correlation (CC) values for each piece separately across the eight trials. (A) Similarity, calculated using the maximum CC value on each

trial for lags between −1.25 and +1.25 s. (B) Synchrony, calculated using a lag of 0 s.

similarity was greatest at a lag where the recording preceded the

performance, or when the two were aligned, and never when the

performance preceded the recording.

4. Discussion

A strong theoretical position states that social coordination

in general and playing music with others in particular rely

on predictive mechanisms because motor movements and

communicative messages require time to plan (Knoblich et al.,

2011; Keller, 2014; Keller et al., 2014; Dobson and Gaunt,

2015). Thus, reacting to the actions or sound output of others

rather than anticipating them will make coordination with

others difficult and synchronization inaccurate. While most

previous studies in naturalistic musical contexts have focused on

actions such as musicians’ body sway to examine how musicians

anticipate how each other will move in order to adjust the timing

of their own movements (Goebl and Palmer, 2009; Glowinski

et al., 2012, 2013; Ragert et al., 2013; Chang et al., 2017, 2019;

Colley et al., 2018, 2020; Hilt et al., 2019; Wood et al., 2022),

here we focused on the musical sound output itself to examine

whether a musician can predict how another musician will

play next based solely on sound. Previous research examining

musicians’ sound output in joint performance tasks has focused

primarily on measures of synchrony, either between MIDI note

onsets or tapping timing (e.g., Repp and Keller, 2008; Goebl and

Palmer, 2009; Keller and Appel, 2010; Repp and Su, 2013), but
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none has directly measured information flow in the continuous

sounds of performing musicians. Using the context of a Western

musician playing with a recording, we were able to control one

musician (the recording) to be identical for all the performing

musicians. Our GC analyses clearly showed that information

flow was much higher from the recording to the musicians than

vice versa, indicating that musicians can learn to predict how

another musician will play next on the basis of the sounds they

just produced.

A second question of interest concerns two possible sources

of predictive information and how musicians learn through

practice to create a shared expressive model of how to interpret

a piece of music together. Here we examined this in the

simplified and controlled situation where one musician was a

sound recording that a secondmusician performed with, playing

each piece eight times in succession. We deliberately chose

two solo violin pieces that offer room for a large amount of

expressive variability so that simply playing the correct notes

would not be sufficient; the musicians playing with the recording

needed to match the recording musician’s interpretation. One

source of predictive information is directly in the musical

sounds of the recording musician, whereby the performing

musician may be able to predict how the recording musician

will play next based on how they just played. A second source of

predictive information is based on prior knowledge about how

the musician on the recording is likely to play the piece. Initially,

the performing musicians only have prior knowledge of the

recording based on their understanding of the Western musical

genre and how they may have heard the piece or similar pieces

performed in the past. However, through repeatedly hearing the

recording across the eight trials, we would expect the performing

musicians to improve their prior knowledge by building up

an internal representation (or memory) of precisely how the

recording musician played the piece. In turn, this should allow

them to anticipate and synchronize more accurately with the

recording and come to rely more on this alternative source

of predictive information. Consistent with this interpretation,

we found, as predicted, that GC values from the recording

to the performing musicians decreased across the eight trials,

suggesting that as they became more familiar with, that is,

learned, the expressive rendition of the recording musician, they

relied moment to moment less on predictive cues based on what

the recording musician had just played and more on predictions

based on their memory or internal model built from having

heard this particular performance repeatedly.

Performances typically consist of interacting live musicians,

involving non-verbal communication and prediction of how

each other will play, and the refinement through experience

of an internal model or knowledge of how the other will play.

The use of generative models to explain “top-down” influences

on perception rests in the predictive processing paradigm (a

centuries old philosophical tradition; Swanson, 2016) that also

supports the active inference framework (Friston and Kiebel,

2009; Vuust and Witek, 2014; Friston and Frith, 2015; Heggli

et al., 2019). In this view, independent interacting agents infer

the causes of sensory information, which includes that generated

by the other agent, and act to minimize their uncertainty. One

caveat of our study is that the recording was fixed, so only the

performingmusician was able to adapt their internalmodel. Still,

our results are consistent with the active inference perspective

in that information flowed from the recording to the musician

rather than vice versa, and that the performing musician came

to rely less on immediate inferences (i.e., GC decreased) through

practice, consistent with the musician building a more accurate

internal predictive model through repetition.

As the performing musicians came to rely less on predictive

cues in the musical sounds on the recording and more on

an internal model based on learning (or memory of) the

interpretation of the recording musician, we expected that

their performances would become more similar to that of the

recording musician. Past studies have used a cross-correlation

(CC) measure of the similarity between musicians’ movements

and note onsets (e.g., Goebl and Palmer, 2009; Wing et al., 2014;

Colley et al., 2018, 2020; Bishop et al., 2019b) and tapping timing

(e.g., Pecenka and Keller, 2011; Schultz and Palmer, 2019). In the

present study examining the musical outputs of musicians, we

expected CC to increase across trials as GC decreased. Indeed,

a previous study from our lab observed this inverse pattern

in the body sway times series of members of a string quartet

(Wood et al., 2022), where GC decreased across trials while

CC increased. In line with our predictions, we found that CC

increased across trials for both pieces (trending significant for

Piece 2); however, linear trends for increasing CC across trials

were not significant (as they were for decreasing GC values),

indicating that CC increased more at some points during

learning than at others, perhaps reflecting in part that musicians

may have fatigued towards the end of the eight repetitions.

Given that CC measures the maximum absolute correlation

within a range of time lags between the recording musician

and the performing musician (±1.25 s), this measure does not

necessarily inform us about how synchronized or phase aligned

the performing musicians were with the recording. To examine

this, we ran a CC analysis using only a lag of zero, that is,

we examined correlations between the recording and performer

sound outputs when aligned in time. In this case, we found that

CC increased significantly across trials for both pieces. In sum,

we found evidence that the sound outputs of the recording and

performing musicians became more synchronized over trials—

indicating that the performing musicians’ ability to synchronize

or phase align with the recordings increased the more times they

heard and played the piece.

Our measures of similarity and synchrony displayed an

almost-identical pattern of increasing values over trials. This

means that restricting the range of time lags over which

the cross-correlation coefficients were calculated had little

effect because in most cases the maximum absolute coefficient
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occurred close to a lag of zero. However, these optimal lags were

almost always positive or zero (98.5% including both pieces).

The positive sign observed in these values indicates that the

maximal similarity of the two time series occurred when the

recording preceded the performance. Although this does not

necessarily reflect any causal interaction, one process that causes

another would be expected to occur ahead of it in time.

In interpreting these results, however, it should be kept

in mind that we performed our analyses on the amplitude

envelope of the sound. While the amplitude envelope captures

details of intensity changes over time, it misses many other

aspects of musical expression, including pitch changes. For

instance, two or more slurred notes can be played in succession

with a single bow stroke, producing very little change in the

overall intensity of the sound; nor will the amplitude envelope

capture expressive micro-pitch changes, such as those associated

with vibrato. Thus, while the amplitude envelope reflects

many of the small continuous adjustments musicians make,

it should be considered an imperfect, albeit useful, proxy for

musical expression and some expressive characteristics present

in our participants’ performances were likely inaccessible to

our analysis. It is possible that a frequency-based comparison

between the two sound streams, such as spectral coherence,

could prove fruitful. Expert ratings of performance synchrony

could serve as another useful (although non-objective) measure.

Several of our results differed slightly across the two pieces.

In particular, the increase in similarity was only trending

significant for Piece 2. Although minor, given that all but one

violinist in each group performed both pieces, these differences

suggest structural aspects of the two specific pieces played a

role in violinists’ process of learning to match or synchronize

with them. Both pieces were chosen for the high level of

expressive freedom taken by the performer but had other

important differences, related to both difficulty and familiarity.

All performing musicians reported having heard and played

Danny Boy previously but none had heard In The Garden

before, which we expected given the general popularity of

Danny Boy within the context of Western music. Regarding

difficulty, In The Garden had a faster tempo (130 vs. 55 beats

per minute), a higher note density (∼1.70 vs. ∼1.09 notes

per second) and included double stops, consistent with some

violinists anecdotally reporting finding it more challenging. Both

of these factors might be expected to affect learning rates.

In naturalistic contexts, musicians likely use movements,

sights and sound to predict how each other plan to play, and

the extent of their reliance on different cues likely depends on

the situation. For example, changes in bodymovement dynamics

in joint performance have been shown to track changes in task

demands. Motion capture data revealed that head movements

of violinists become more regular and predictable when playing

in a quartet vs. solo (Glowinski et al., 2013) and that gestures

become more coordinated and smoother during periods of

temporal instability as a group learns unfamiliar music (Bishop

et al., 2019b). Research in this vein highlights how sensory

signals arriving by auditory and visual modalities interact; when

one type of information is unavailable or insufficient, another

may become more important. Leaders in piano duos tend to lift

their fingers higher and play less synchronously when they get

less auditory feedback from partners, suggesting that the lack of

information in the auditory domain increased the importance

of visual cues (Goebl and Palmer, 2009). Bishop and Goebl

(2015) showed that pianists played less synchronously with a

video recording of a performance when they could only see but

not hear the recording, but that in this condition synchrony

increased during periods after long pauses, pointing to the

importance of visual cues for synchronizing when a partner’s

performance is difficult to predict.

The performance task we asked musicians to undertake

of matching their performance to a recording was not

representative of how they would typically perform. However,

this highly controlled experiment clearly establishes that

information flow in musical sound output between musicians

reflects the dynamics of interaction and learning. It is exciting in

opening the door to understanding subtleties of how musicians

jointly create complex musical performances at the sound level.

It also opens a rich set of questions regarding how movements

(such as body sway) and auditory perception interact to

achieve joint musical goals. Immediate questions that need to

be explored include measuring information flow between the

sounds of live pairs of musicians as well as larger groups. We

would expect to see mutual predictive influences between the

sounds of live musicians playing together, effects of leadership

whereby the sounds of leaders affect the sounds of followers

more than vice versa, increases in information flow when a

piece is played more expressively, and decreases in information

flow as a piece is rehearsed and common joint internal

models are formed. Extending to more than one live musician

presents challenges in measuring each musician’s sound output

separately and would require either pickups or highly directional

microphones that can record each instrument’s audio separately

with little residual bleeding between the recordings, or signal

processing techniques, or some combination of these. While

MIDI can get around this issue, examining the rich sound

output of non-percussion instruments that create continuous

sound, as in the present study, would be very informative.

Having musicians perform in separate rooms would solve this

issue and introduce the ability to compare seeing and non-

seeing conditions.

The present study investigated information flow through

sound in the context of Western music performance in which

musicians played a pre-composed piece from a score. However,

many other styles and genres of music exist both within and

beyond Western music. For example, in improvisation, such

as occurs in jazz ensembles or jam bands, musicians compose

new music in real-time. The increased uncertainty that this

engenders may make predictions of what fellow musicians will
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play on the basis of what they just played even more important

than in non-improvised contexts. Across cultures, there are

marked differences in scales used, rhythmic complexity, degree

of polyphony, and whether precise synchrony is a goal or not. To

determine whether information flow and synchrony can reveal

coordination dynamics of joint music making universally, they

will need to be measured in many contexts and across different

cultures. We hope that the results of this study, conducted in

a highly controlled setting, will lay the groundwork for future

application of Granger Causality to musical sound coordination

in more varied and ecologically valid performance contexts. We

believe this approach could serve as a useful tool for investigating

information flow between the sound outputs of live performing

musicians, similar to what has been done for body sway.
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