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Rhythmicity permeates large parts of human experience. Humans generate

various motor and brain rhythms spanning a range of frequencies. We also

experience and synchronize to externally imposed rhythmicity, for example

from music and song or from the 24-h light-dark cycles of the sun. In the

context of music, humans have the ability to perceive, generate, and anticipate

rhythmic structures, for example, “the beat.” Experimental and behavioral studies

offer clues about the biophysical and neural mechanisms that underlie our

rhythmic abilities, and about different brain areas that are involved but many open

questions remain. In this paper, we review several theoretical and computational

approaches, each centered at different levels of description, that address specific

aspects of musical rhythmic generation, perception, attention, perception-action

coordination, and learning. We survey methods and results from applications of

dynamical systems theory, neuro-mechanistic modeling, and Bayesian inference.

Some frameworks rely on synchronization of intrinsic brain rhythms that span

the relevant frequency range; some formulations involve real-time adaptation

schemes for error-correction to align the phase and frequency of a dedicated

circuit; others involve learning and dynamically adjusting expectations to make

rhythm tracking predictions. Each of the approaches, while initially designed

to answer specific questions, offers the possibility of being integrated into a

larger framework that provides insights into our ability to perceive and generate

rhythmic patterns.

KEYWORDS

beat perception, entrainment, neuro-mechanistic modeling, dynamical systems, music,
Bayesian modeling, synchronization

1. Introduction

Biological processes, actions, perceptions, thoughts, and emotions all unfold over time.
Some types of sensory information like static images can carry meaning independent of
time, but most, like music and language, get all of their semantic and emotive content
from temporal and sequential structure. Rhythm (see Glossary) can be defined as the
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temporal arrangements of sensory stimuli offering some amount
of temporal predictability. The predictability granted by rhythm
allows the organism to prepare for and coordinate with future
events at both neural and behavioral levels (deGuzman and Kelso,
1991; Large and Jones, 1999; Schubotz, 2007; Fujioka et al., 2012;
Patel and Iversen, 2014; Vuust and Witek, 2014). For example,
repetitive movements, such as locomotion, are rhythmic. Simple
repetitive rhythmic movements are relatively easy to instantiate
in neural circuits, as can be seen from work on invertebrates
and central pattern generation circuits (Kopell and Ermentrout,
1988; Marder et al., 2005; Yuste et al., 2005). Rhythm is also the
basic building block for human auditory communication systems,
speech, and music (e.g., Fiveash et al., 2021), but here, of course, the
dynamics are much more complex and flexible.

From a rhythmic pattern (rhythmic surface), humans neurally
extract a (typically) periodic sequence known as a beat. It should be
noted that beats can be perceived even where the rhythmic surface
has a rest or silence (Figure 1A). Humans perceive beats at rates
between about 0.5–8 Hz, with optimal beat perception around 2 Hz
(Repp, 2005; Patel and Iversen, 2014). In addition, human brains

FIGURE 1

(A) A rhythmic pattern (rhythmic surface) and possible metrical
hierarchies. Notes indicate sound onsets and rests indicate silences.
People perceive beats at different rates, or levels, and people
neurally extract periodic sequences corresponding to beats with
events at sounds and silences. Three levels of the metrical hierarchy
(beat levels) are shown. In the example, the pulse (the intermediate
beat level) is bistable; people can perceive this rhythm in groups of
2 or in groups of 3 pulses. (B) The synchronization-continuation
task. A person first listens to an isochronous rhythm and
synchronizes movements with it. Next, the stimulus ceases and the
person continues tapping at the same frequency. (C) An improvised
piano melody. Musical events unfold with diverse timings and
discrete onset times are not periodic, but may result in a
pseudo-periodic pulse percept, which can function as a series of
temporal expectancies (i.e., times at which events are likely to
occur) in the human listener.

extract a metrical hierarchy of temporal organization (or nested
beat levels), typically with groups of two or three successive beat
events at one level forming a single beat event at another level
(see Figure 1A). The term pulse refers to the most salient level
of beats, behaviorally defined as the beats a listener taps when
synchronizing with a musical rhythm. Importantly, energy at the
pulse frequency, or tempo, of a rhythm is not necessarily contained
prominently, or not at all, in the rhythmic surface (Haegens and
Zion Golumbic, 2018). Thus, the pulse percept comes from the
brain’s tendency to impose rhythmic structure on its auditory input
(Tal et al., 2017), which it begins to do even early in development
(Phillips-Silver and Trainor, 2005). It should be noted also that
for complex rhythms, the beat can be ambiguous or multi-stable;
for example, a 6-beat pattern could be organized hierarchically as
two groups of three beats or as three groups of two beats (see
Figure 1A). In this review we focus on models of beat, pulse,
and meter, aimed at comparing and contrasting theoretical and
modeling frameworks. While the approaches we review have also
been used to make predictions about other rhythmic phenomena
such as pattern perception (Kaplan et al., 2022) and groove, these
topics are beyond the scope of the current review.

The major developmental disorders, including dyslexia, autism,
attention deficits, and developmental coordination disorder, have
been associated with deficits in timing and rhythm processing
(Lense et al., 2021), suggesting that rhythm perception is
deeply intertwined with core developmental processes. Rhythm
is an important ingredient of human social functioning: the
predictability of auditory rhythms enables humans to plan
movements so as to synchronize with the beat, which in turn
facilitates synchrony between people. A number of studies have
shown that interpersonal synchrony promotes feelings of trust and
social bonding (Hove and Risen, 2009; Valdesolo et al., 2010; Mogan
et al., 2017; Savage et al., 2020), even in infancy (Cirelli et al.,
2014; Trainor and Marsh-Rollo, 2019). The centrality of rhythm
to human development and social interaction might explain why
rhythmic music is universal across human societies; why people
engage in music (listening and/or playing) most days of their
lives; why caregivers around the world use rhythmic infant-directed
singing as a tool to help infants with emotional regulation (calming
or rousing) and social development; and why adults engage in
rhythmic music to promote social bonding, such as at weddings,
funerals, parties, team sports, cultural rituals, in war, and in
religious ceremonies.

The central role of rhythm perception in human life energizes
the scientific challenge of understanding it. In the present paper, we
examine how different classes of computational models approach
the problem of how rhythms are perceived and coordinated,
focusing on the strengths and challenges faced by each approach.
In the remainder of the introduction, we outline some of the basic
issues that models must address. Then, in subsequent sections, we
go into details of the predominant approaches to date.

At the most basic level, humans are able to perceive pulse and
meter, and synchronize their motor behavior with music, such as
through dance (Savage et al., 2015; Ellamil et al., 2016), body sway
(Burger et al., 2014; Chang et al., 2017), or finger tapping (Repp,
2005; Repp and Su, 2013). Even synchronizing with an isochronous
sequence of events, such as that produced by a metronome, raises
numerous theoretical questions. Does the brain develop an explicit
model of the metronome to predict its timing, or do the brain’s
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intrinsic neural rhythms naturally entrain to the beat? Might the
brain eschew the use of oscillatory processes, and instead estimate
the passage of time by counting the pulses of a pacemaker? Or does
it utilize a combination of endogenous oscillatory neuronal circuits
and counting processes?

Human rhythmic capabilities are simultaneously flexible
enough to adapt to changes in musical tempo, yet robust enough
to maintain the beat when faced with perturbations. Research
on synchronization suggests that people can re-synchronize their
tapping within a few beats of a tempo change (Large et al.,
2002; Repp and Keller, 2004; Loehr et al., 2011; Scheurich et al.,
2020); therefore, any model of rhythm perception must be able
to flexibly adapt in real-time, within several beats. Furthermore,
music production often occurs as a collaborative activity, in
which multiple performers must coordinate with one another in
real time. Within these social contexts, the flexibility of human
synchrony allows performers to maintain cohesion through mutual
adaptation to one another’s variations in timing (Konvalinka et al.,
2010; Loehr and Palmer, 2011; Dotov et al., 2022). How this
adaptation occurs remains an open question: Do timing changes
evoke prediction errors that drive the brain to update its model
of the meter, or do perturbations directly drive neural oscillations
to shift in phase and/or period? Rhythm perception is also
robust to brief perturbations. In real performances, musicians use
deviations from "perfect" mechanical timing as a communicative
device. For example, musicians often leave clues as to the metrical
structure of a piece by lengthening the intervals between notes at
phrase boundaries (Sloboda, 1983; Todd, 1985), called phrase-final
lengthening. Research suggests that these instances of expressive
timing may actually aid – rather than disrupt – listeners in parsing
the metrical and melodic structure of the music (Sloboda, 1983;
Palmer, 1996; Large and Palmer, 2002). Alternatively, small timing
deviations appear to be related to information content or entropy.
Phrase boundaries are typically places of high uncertainty about
what notes, chords, or rhythm will come next, and there is evidence
that people slow down at points of high uncertainty (Hansen
et al., 2021). A viable neural model of rhythm perception must
therefore not destabilize or lose track of the beat due to intermittent
deviations such as these.

Our sense of rhythm is robust not only to timing perturbations
but also to the complete discontinuation of auditory input: humans
display the ability to continue tapping to a beat even after an
external acoustic stimulus has been removed (e.g., Chen et al., 2002;
Zamm et al., 2018), known as synchronization-continuation tapping
(Figure 1B). Does this ability imply that we have “learned” the
tempo? Or perhaps it points to hysteresis in a neural limit cycle,
allowing it to maintain a rhythm even after external driving has
ceased.

Important for its theoretical implications is the fact that
synchronization behavior appears to be anticipatory. For example,
when synchronizing finger taps with rhythms, people tend to tap
tens of milliseconds before the beat – a phenomenon known as
negative mean asynchrony (NMA; see Repp and Su, 2013, for a
review). What neural mechanisms might be responsible for this
asynchrony? Does NMA represent a prediction of an upcoming
event, or might it arise from a time-delayed feedback system among
neural oscillators (e.g., Dubois, 2001; Stepp and Turvey, 2010;
Roman et al., 2019)?

Beyond the basic beat structure, music can be far more
intricate and involves perceiving, learning, and processing complex
acoustical patterns, such as in the case of syncopation. Evidence
suggests that people can still perceive a beat in highly complex
rhythms (see Figure 1C), even rhythms so complex as to contain
no spectral content at the beat frequency (Large et al., 2015; Tal
et al., 2017). This ability necessitates considering larger network
structures that appropriately respond to the different frequencies
present in these patterns. What kinds of neural structures might
be at play? Perhaps they are oscillator-based, and if so, the extent
to which the intrinsic and synaptic properties of the constituent
elements determine model output is important to understand.
Perhaps these networks form a rhythm pattern generator akin
to a “central pattern generator” found in motor systems, cardiac
systems, and various invertebrate systems (Kopell and Ermentrout,
1988; Marder et al., 2005; Yuste et al., 2005) in which case it
would be important to understand what is the neural basis for
pacemaking within the circuit. On the other hand, it is possible
that the neural structures do not rely on intrinsic oscillation at
all. For example, there may exist stored templates used to perceive
and recall a rhythm. If so, it is of interest to explore plausible
neural instantiations for template learning or other possible non-
oscillatory mechanisms.

Electrophysiological data from non-human primates has
gradually shed light on some of the possible mechanisms of beat
and rhythm processing. One main challenge is the time (years)
and effort that goes into training monkeys to synchronize with
isochronous beats and complex rhythmic stimuli. Nonetheless, data
from non-human primates has revealed that individual neurons
in the medial prefrontal cortex (mPFC) show accelerating firing
rates that reset after beat onsets and are a direct function of the
beat tempo (Crowe et al., 2014; Merchant and Averbeck, 2017;
Zhou et al., 2020). These studies reveal that the mPFC dynamically
encodes the beat, and that it can integrate periodic information
independent of the stimulus modality (i.e., visual or auditory;
Betancourt et al., 2022). To date we are not aware of human
data collected at comparable neural substrates during a similar
rhythm-tracking task.

In humans it is extremely difficult to measure single neuron
activity, hampering the development of detailed biophysical models
of neurons and the circuits that underlie human rhythm processing.
However, higher level models can be informed by non-invasive
methods in humans. In particular scalp-measured EEG and MEG
have the temporal resolution to observe both population neural
oscillatory activity in the time-frequency domain as well as large
brain events occurring over tens of milliseconds. fMRI recordings
are not sensitive enough to observe fine temporal dynamics,
but they are able to delineate brain areas involved in rhythmic
processing, as well as the connections between these areas. Despite
these limitations, human neurophysiological data has informed
some higher-level models of rhythm processing, both in suggesting
constraints and providing a way to test some aspects of the model
predictions. In summary, computational modeling efforts attempt
to address fundamental questions about how the brain generates a
beat and maintains it in the presence of noise and perturbations,
while retaining the flexibility to adapt on the time scale of seconds
to new tempos or rhythms, whether they are simple like that of a
metronome (Figure 1B) or more complex like that found in a piece
of music (Figure 1C).
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In this paper, we review multiple modeling paradigms at three
different levels of description that seek to explain various aspects of
human rhythmic capabilities. These models rely, to some extent, on
the fact that the organized temporal structure of musical rhythms
is generally predictable and often periodic. At the highest level
of organization, Bayesian inference (e.g., Sadakata et al., 2006;
Cannon, 2021) and predictive coding (e.g., Vuust and Witek,
2014; Koelsch et al., 2019) approaches exploit the predictability
of rhythms by suggesting that the brain constructs a statistical
model of the meter and uses it to anticipate the progression
of a song. In contrast, oscillator models based in the theory of
dynamical systems utilize Neural Resonance Theory (Large and
Snyder, 2009) to show how structure inherent in the rhythm itself
allows anticipatory behavior to emerge through the coupling of
neural oscillations with musical stimuli (e.g., Large and Palmer,
2002; Large et al., 2015; Tichko and Large, 2019). In this approach,
a heterogeneous oscillator network spanning the frequency range
of interest mode-locks to complex musical rhythms At perhaps
the most basic level of modeling, beat perception of isochronous
rhythms is addressed by mechanistic models that are either event-
based (Mates, 1994a,b; Repp, 2001a; van der Steen and Keller, 2013)
or based on neuronal-level oscillator descriptions (Bose et al., 2019;
Byrne et al., 2020; Egger et al., 2020), both of which fall within
the broad framework of dynamical systems. These mechanistic
models postulate the existence of error-correction processes that
adjust the period and phase of the perceived beat. Evaluating the
merits of each modeling approach requires testing how well each
can address specific findings from among the rich collection of
rhythmic abilities and tendencies that humans exhibit.

The topic of musical rhythm has a rich history in psychology,
and many different types of models have been proposed (Essens
and Povel, 1985; McAngus Todd and Brown, 1996; Cariani, 2002).
The models reviewed in this paper share the common feature
that they are all dynamic; namely, they all involve variables that
evolve in time according to some underlying set of ordinary
differential equations. Another common feature is event-based
updating; an event may be the onset of an auditory stimulus, the
spike time of a neuron, or the zero crossing of an oscillator’s
phase. At each event time, a variable or a parameter in the model
is updated with a new value. In some cases, this may lead to
formulation as a discrete dynamical system that can be described
using a mathematical map (e.g., Large and Kolen, 1994; Large and
Jones, 1999). Despite these formal similarities, the way that the
dynamic formalisms are deployed often reflects deep differences
in theoretical approaches. The neuro-mechanistic approach utilizes
differential equations that describe the dynamics of individual
neurons, which may then be combined into circuits designed
to implement descriptions of neural function. The neuron-level
and often the circuit-level descriptions can be analyzed using the
tools of nonlinear dynamical systems (Rinzel and Ermentrout,
1998; Izhikevich, 2007), and the resulting models are well-suited
to making predictions about neuron-level data. The dynamical
systems approach is a theoretical framework within which the
embodied view of cognition is often formalized (Kelso, 1995; Large,
2008; Schöner, 2008). Here, differential equations capture the
general properties of families of physiological dynamical systems,
and are derived using the tools of nonlinear dynamics (Pikovsky
et al., 2001; Strogatz, 2015). These models are not intended to
make predictions about neuron-level data. Rather, they are aimed

at making predictions about ecological dynamics (dynamics of
interaction of the organism with its environment), population-level
neural dynamics, and the relationship between the two. Finally,
Bayesian inference models are not always associated with dynamics,
however the domain of musical rhythm (which is all about change
in time) makes the language of differential equations natural in
this case. Bayesian models such as the one described here are
aimed squarely at behavior-level data, not at the level of individual
neurons or even neural populations. However, when deployed
in the rhythmic domain, interesting parallels emerge that relate
Bayesian models to more physiologically oriented descriptions, as
we shall see.

2. Neuroscience of rhythm
processing

There is considerable evidence that the brain is capable of
both duration-based (or single interval) timing and beat-based
timing (Kasdan et al., 2022). fMRI and TMS studies in healthy
populations show that duration-based timing relies particularly
on the cerebellum (Teki et al., 2011; Merchant et al., 2015), and
these results are corroborated in patients with cerebellar damage
(Grahn and Brett, 2009; Grube et al., 2010). Furthermore, the
cerebellum has been associated with prediction, absolute duration,
and error detection (Kasdan et al., 2022). On the other hand,
fMRI studies consistently show that beat perception activates
a network involving auditory superior temporal regions, basal
ganglia (notably the putamen), and supplementary (and pre-
supplementary) motor areas (Lewis et al., 2004; Chen et al., 2006,
2008a,b; Grahn and Brett, 2007; Bengtsson et al., 2009; Grahn and
Rowe, 2009, 2013; Teki et al., 2012; Patel and Iversen, 2014). It has
been hypothesized that beat perception relies on the integration
of these systems through pathways additionally involving parietal
and auditory areas (Patel and Iversen, 2014; Cannon and Patel,
2021). Critical to this hypothesis is that beat perception relies on
auditory-motor interactions. In humans, there is much evidence
that motor areas are used for auditory timing (Schubotz, 2007;
Iversen et al., 2009; Fujioka et al., 2012). Evidence from non-
human primates synchronizing with periodic stimuli also shows
interactions between sensory and motor areas (Betancourt et al.,
2022). Thus, fully modeling rhythm processing in the human
brain will likely require an architecture with both local areas and
bidirectional interactions between areas.

Cross-species studies suggest that humans and monkeys share
mechanisms for duration-based timing, but that only humans
show robust beat-based timing (Merchant and Honing, 2014;
Merchant et al., 2015). Developmental studies indicate that young
infants detect changes in rhythms in simple as well as moderately
complex metrical structures, but that by 12 months of age,
infants have already become specialized for processing rhythms
with metrical structures that are common in their environment
(Hannon and Trainor, 2007). Cross-cultural perceptual/tapping
studies in adults have revealed that there is a universal tendency
for people to “regularize” randomly timed rhythm patterns, so as
to perceive/reproduce small-integer ratios between the durational
intervals (Jacoby and McDermott, 2017). At the same time, people
who grew up in different cultures that exposed them to different
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meters show different biases for the ratios that dominate their
perception and production (Jacoby et al., 2021). Thus, of relevance
to modeling, there appear to be both innate tendencies that
may reflect intrinsic properties of neural networks and a degree
of flexibility, such that networks are likely shaped both by the
immediate input and longer-term learning.

Many neuroscience studies of beat and rhythm have been
theoretically motivated by the idea that temporal regularity enables
prediction of when upcoming beats are expected (Large and Kolen,
1994; Huron, 2008), with the consequence of enhanced perception
at the times of beat onsets in determining both when events
are expected to occur and what the events are expected to be
(Large and Jones, 1999; Schroeder and Lakatos, 2009; Arnal and
Giraud, 2012; Henry and Herrmann, 2014; Chang et al., 2019).
While fMRI studies can reveal brain regions involved in processing
rhythmic information, the temporal and spectral precision of
EEG and MEG make them useful for testing models of rhythm
perception. Two basic approaches can be taken for EEG analysis.
One examines the time course of electrical activity in the brain as
sound events occur in a stimulus input (event-related potentials
or ERPs), whereas the other uses frequency-based analyses to
understand periodicities and phase relations in the neural response.
Components of ERPs, such as mismatch negativity (MMN), occur
in response to unexpected events in sequences or patterns of sounds
(Näätänen et al., 2007; Carbajal and Malmierca, 2018), and have
been shown to reflect predictive processes (e.g., Bendixen et al.,
2009; Dauer et al., 2020). While clear MMN is seen in response to a
sound event with unexpected pitch or timbre (or pattern of pitch or
timbre events) in the context of a sequence of sound events, direct
evidence for predictive timing is less clear. This is likely because it
is difficult to distinguish neural ERP activity at the expected time
of an event (representing a response to the violation of timing
expectation) from neural activity in response to the actual sound
event, whether it occurs earlier or later than expected. However,
ERP responses have been shown to be larger for sound omissions
on metrically strong beats than omissions on metrically weak beats
(Bouwer et al., 2014), even in newborns (Winkler et al., 2009).
ERPs can be used indirectly to examine temporal expectations,
however. For example, infants show larger ERP responses on beats
they were previously primed to perceive as accented compared to
those they were primed to hear as unaccented, when listening to
rhythms with ambiguous metrical structure (Flaten et al., 2022).
Thus, even infants can endogenously maintain a particular metrical
interpretation of an ambiguous rhythm, and models of rhythm
perception need to be able to cope with ambiguity and multi-
stability.

A popular approach has been to examine the entrainment
of neural responses to the frequencies present in temporally
structured auditory input stimuli, with an interest both in
frequency and phase alignment (Henry et al., 2014; Morillon and
Schroeder, 2015). Many studies show that when presented with a
rhythm, whether in speech or music, ongoing delta frequencies will
phase align with the beats of the rhythm (Schroeder and Lakatos,
2009; Lakatos et al., 2013, 2016; Poeppel and Assaneo, 2020).
There is debate as to whether these neural oscillations represent
the brain entraining to the input (Haegens and Zion Golumbic,
2018). Evidence suggests, however, that these oscillations do not
simply reflect ERP responses following each sound event in the
input stimulus (Doelling et al., 2019), but rather change according

to predictive cues in the input (Herbst and Obleser, 2019). Further,
neural oscillations do not simply mimic the temporal structure of
the input (Nozaradan et al., 2011, 2012; Tal et al., 2017), but also
reflect internally driven (endogenously activated) processes, some
of which appear to be present already in premature infants (Edalati
et al., 2023). Thus, neural oscillations appear to be a window into
dynamic neural mechanisms (Doelling and Assaneo, 2021) and
provide a way to test aspects of computational models.

The next few sections will examine and compare different
modeling approaches spanning neuronal, mid-level and high-level
descriptions of rhythm processing.

3. Models for time-keeping, beat
generation, and beat perception

Models that allow for discrete event-times are suited to address
questions related to time-keeping, generation of isochronous
rhythms, and synchronization of a periodic rhythm to a complex
musical rhythm (beat perception). Time-keeper models are error
correction models within the information processing tradition,
and they primarily operate by adapting to the time intervals in a
stimulus. Continuous time neuro-mechanistic models described in
this section produce event-times. They are also error-correction
models that seek to align the timing of internally generated events
to the timing of the external sound onsets. They update parameters
of a dynamical neuronal system to achieve matching of phase
and period with the stimulus. Adaptive oscillator models simulate
synchronization (i.e., phase-and mode-locking) of an oscillation
with a complex stimulus rhythm, and have been used to simulate
the perception of a beat in complex musical rhythms. They adapt
period based on the phase of individual events rather than on the
measurement of time-intervals.

3.1. Algorithmic time-keeper models

The earliest set of time-keeper models were predominantly
algorithmic error-correction models (Michon, 1967; Hary and
Moore, 1987; Mates, 1994a,b; Vorberg and Wing, 1996), many of
which were reviewed by Repp (2005) and Repp and Su (2013). For
example, Mates (1994b) defined variables that model the internal
time estimates that an individual makes; the kth stimulus onset
time is defined as SI(k), the kth motor response time by RI(k), their
error eI(k) = SI(k) − RI(k) and the kth cycle period by tI(k). At the
occurrence of the stimulus, the period is updated by the correction
rule

tI(k) = tI(k− 1) − β(tI(k− 1) − [SI(k)− SI(k− 1)]),

while phase correction obeys

RI(k+ 1) = RI(k) + tI(k) − α eI(k),

where α and β are the strengths of the phase and period correction,
respectively. This is a linear model which can be solved explicitly.
In the isochronous case, SI(k)− SI(k− 1) equals the interonset
interval, denoted IOI (the time between successive stimulus spikes)
provided that the estimate is itself error free. In that case, period
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FIGURE 2

Schematic representation of the beat generator model with stimulus tones that drive a stimulus neuron (S), a beat generator neuron (BG) driven by
an adjustable applied current (Ibias), a gamma count comparator that changes Ibias through rules for period learning LRT and phase learning LRφ.

matching requires tI(k− 1) = SI(k)− SI(k− 1), which in turn
implies tI(k) = tI(k− 1). Perfect synchrony for this case occurs
when eI(k) = 0, tI(k) = IOI and thus the RI(k+ 1) motor
response is exactly an IOI in duration after the RI(k) motor
response. Because the model is linear, it is straightforward to
understand the separate effects that phase correction (strength
α) and period correction (strength β) have on solutions. Further,
the model readily adapts to tempo changes over a few cycles by
changing SI(k)− SI(k− 1) away from a constant value. It can also
exhibit asynchronies in the steady state difference between stimulus
time and motor response by allowing eI(k) to be non-zero.

3.2. Neuro-mechanistic oscillator models

While time-keeper models have been successful in matching
experimental data and aspects of synchronization, they leave
open a major question. What are the neuro-mechanisms that
the brain uses to synchronize and adapt to time intervals? Does
the brain measure the passage of time? Early models focused on
determining the length of intervals, anywhere from seconds to
minutes. Treisman (1963), Church and Gibbon (1982), and Gibbon
et al. (1984) proposed a pacemaker accumulator framework in
which counts of a pacemaker clock are accumulated in a reference
memory after a series of trials of different duration. These reference
durations are then compared to a working memory accumulation
for the current interval to make a judgment of duration. Left open
is how a neuronal model may produce the pacemaker clock or
the ability to count cycles and compare different counts. Also, an
unaddressed issue is that in rhythmic interval timing, the model
seeks a particular alignment of stimulus and beat generator phase;
in single interval timing the accumulator is by definition aligned
with the interval’s initial time.

Recently, a new set of models for beat perception that are based
on continuous time dynamical systems which incorporate event-
based error correction rules have been derived. Bose et al. (2019)
combined ideas of counting taken from pacemaker-accumulator
models with those from error-correction models to develop an
adaptive, biophysically based neuron/population beat generator

FIGURE 3

Time courses show the BG originally oscillating at 2 Hz quickly
learning a faster 3.65 Hz frequency and then performing
synchronization-continuation. (middle panel) Shows how Ibias

adjusts within a few cycles based on period and phase learning rules
(lower panel) to bring its value within a specified tolerance of the
target value (dashed line). The blue shaded region represents the
accuracy tolerance of roughly 30 ms prescribed in the model.

(BG) that learns the spiking phase and period of a stimulus
neuron (S) that represents an isochronous stimulus tone sequence
(Figure 2). While based in dynamical systems, it is neither
an information processing model, nor an entrainment model.
It consists of a limit-cycle oscillator with specific period and
phase learning rules that adaptively adjust an input strength
Ibias to the BG. The term Ibias in conjunction with the widely
found ionic currents that constitute the BG enabling it to
oscillate over frequencies 0.5–8.0 Hz, that include beyond the
range covered in finger-tapping experiments; (see Repp, 2005),
determines the neuron’s frequency to input (freq-Input) curve.
The BG neuron is a Type I neuron (oscillations can arise with
arbitrarily slow frequencies as the input parameter increases
through a bifurcation value) with a monotonic, non-linear freq-
input curve whose shape determines several of the BG’s dynamic
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properties (Bose et al., 2019). It is not an entrainment model, as
S does not exert an explicit forcing input to the BG. It differs
from an information processing model by having an explicit
neuronal representation of the beat generator, rather than positing
the existence of an internal timekeeper. Indeed, as opposed to
earlier algorithmic models, the error-correction rules are not
directly applied to period and phase. Instead, the model compares
estimates of IOI lengths by tracking the number of pacemaker
cycles (e.g., gamma-frequency oscillations) between two successive
BG spikes, γBG, and two successive S spikes, γS through a gamma
count comparator. A period correction learning rule LRT is then
applied at each BG firing event that adjusts Ibias → Ibias +
δT(γBG − γS) that tries to match the integer values of γBG to
γS. A phase correction learning rule LRφ is implemented at each
S firing event to adjust Ibias → Ibias + δφ q(φ)φ|1− φ| and is
designed to send φ to either 0 or 1. This rule has some hidden
asymmetries and may contribute to the existence of NMA that the
BG neuron displays. Here φ is defined as the number of gamma
cycles from a BG spike to the next S spike divided by γS, and
q(φ) = sgn(φ − 0.5). The model resynchronizes quickly over a
few cycles to changes in stimulus tempo (Figure 3) or phase, as
well as to deviant or distracting stimulus events. It can perform
synchronization-continuation (Figure 3) and displays NMA in
that, on average, the BG firing time precedes that of the stimulus.
Byrne et al. (2020) analyzed dynamical systems features of a BG
model based on the integrate and fire neuron in computational
and mathematical detail. Zemlianova et al. (2022) provided a
biophysically based Wilson-Cowan description of a linear array
network that propagates forward a single active excitatory-
inhibitory (E-I) pair with each gamma cycle, thereby representing
the current gamma count to estimate interval duration.

Egger et al. (2020) derived a related continuous time dynamical
systems based error-correction model. They use a firing rate
framework to describe the activity of neuronal populations
in a feedforward two-layer (sensory and motor command)
architecture that learns an isochronous stimulus sequence. Each
layer incorporates an effective ramping variable, one for sensory
and another for motor, that evolves toward a threshold. The
ramping variable is derived from a competition dynamics that
represents approximately the motion (time scale in IOI range)
along the unstable manifold away from a saddle toward the steady
state of dominance for one competitor. The ramping speed depends
upon an input parameter I that drives the competition. Its value
is adjusted at each reset in the sensory layer toward a match with
the IOI of the stimulus. The motor layer (with similar competition
dynamics) has a continuous-in-time adjustment of I to achieve
phase alignment. The model accounts for a change in tempo
as seen in their behavioral experiments. It also exhibits features
of Bayesian performance in short 1–2-go and 1–3-go sequence
timing tasks. In these tasks, participants are presented either 2 or
3 isochronous tones from a prior distribution and then asked to
estimate the next beat. An optimal Bayesian integrator would utilize
prior knowledge which would produce an estimate that is biased
toward the mean of the distribution, which the model is able to
reproduce. The authors observed a modest NMA in simulations,
but the effect was not analyzed, and no attempt was made to fit
empirical data. Future incorporation of time delays may however
produce this effect (Ciszak et al., 2004; Nasuto and Hayashi, 2019;

Roman et al., 2019; see also section “6.2.1. Transmission delay and
negative mean asynchrony”).

3.3. Phase oscillator models and dynamic
attending theory (DAT)

Another important early approach involved phase oscillator
models (Large and Kolen, 1994; McAuley, 1995; Large and
Jones, 1999; Large and Palmer, 2002) that entrain to their input.
Theoretically, these oscillator models are based on the idea that the
brain does not measure time, instead, the model maps time onto
the phase of an oscillator that synchronizes to rhythmic events.
Dynamic Attending Theory (DAT) refers to the hypothesis that the
neural mechanisms of attention are intrinsically oscillatory, and can
be entrained by external stimuli, allowing attention to be directed
toward specific points in time (Jones, 1976; Jones and Boltz, 1989;
Large and Jones, 1999).

3.3.1. Circle map phase oscillators models
Phase oscillator models, based on circle maps, have a

long history of application within dynamical systems. Given a
hypothetical neural oscillation, a circle map predicts a succession
of states at which events occur in a complex rhythmic stimulus.
The circle map captures the fundamental hypothesis that temporal
expectancies for events in a rhythmic stimulus depend on the phase
of a neuronal oscillation that is driven by stimulus events, mapping
time onto the phase of a neural oscillation (see Figure 4A).

φn+1 = φn +
tn+1 − tn

p
− α F(φn) (mod(−0.5, 0.5) 1) (1)

Here, tn is the time of the nth event, πn is the phase of the
nth event, and p is the intrinsic period of the neural oscillation.
When F(φn) = sin2πφn and the stimulus is periodic, tn+1 −

tn = q, this is the well-studied sine circle map (e.g., Glass and
Mackey, 1988; Glass, 2001). In this case, the oscillator achieves
a phase-locked state when the period of the stimulus, q, is
not too far from the period of the oscillator, p. The greater
the coupling strength, α, the greater the difference between the
two periods can be and still achieve phase locking (a constant
phase difference). Moreover, when the relative period of the
oscillator and a stimulus, p/q, is near an integer ratio, the system
achieves a mode-locked state. The behavior is referred to as
synchronization or entrainment and is summarized in an Arnold
tongues bifurcation diagram (Figure 4B; see also section “5. Neural
resonance theory”).

Mode-locking is significant because musical rhythms are not
just isochronous. They consist of patterned sequences of variable
inter-onset intervals (IOIs; see Figure 1C), tn+1 − tn, which contain
multiple frequencies by definition. It is because of this property
that Eq. 1 can model the perception of a beat at a steady tempo
(frequency) in response to the multiple frequencies present in a
musical rhythm.

Moreover, tempo can change in musical performances. In Eq. 1,
the period p is fixed. However, to account for tempo changes, period
adapting dynamics are introduced through a period correction
term.

pn+1 = pn + pnβ F(φn), (2)
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FIGURE 4

(A) A circle map maps events at times tn and tn−1 onto the phase of an oscillator that entrains to the event sequence [adapted from Large and
Palmer (2002)]. (B) Arnold tongues diagram shows regions in parameter space in which an oscillator mode-locks to a periodic stimulus. Parameters
are the ratio of signal period to oscillator period (q/p) and the coupling strength (α). Darker regions correspond to parameter values that yield faster
phase-locking [adapted from Large and Kolen (1994)]. (C) Period adaptation of an adaptive oscillator (solid line) to a stimulus rate change (dotted
line) [adapted from Large and Jones (1999)]. (D) An analysis showing that mode-locking is preserved in phase and period-adaptive oscillators [e.g.,
(Loehr et al., 2011]). δ is an added elasticity parameter. 1:2 locking (green), 2:3 locking (orange), 1:1 locking (purple), 3:2 locking (blue) and 2:1 locking
(red) are shown [adapted from Savinov et al. (2021)].

where the parameter β is the strength of the period adaptation.
Together Eqs. 1, 2 constitute a period-adaptive, phase oscillator
model (e.g., Large and Kolen, 1994; McAuley, 1995; Loehr et al.,
2011). As illustrated in Figure 4C, period adaptation operates
together with the phase entrainment to adapt to rhythms that
change tempo. Period adaptation enables the system described by
Eqs. 1, 2 to lock with zero phase difference to periodic rhythms
different from its natural frequency (see also, Ermentrout, 1991,
for a similar model of firefly synchronization). A recent analysis of
the Loehr et al. (2011) model demonstrated the stability of multiple
mode-locked states in the period-adapting model (Savinov et al.,
2021) with and without period elasticity (Figure 4D). Extensions of
this model are discussed in the sections “3.3.2. Dynamic attending
and perception-action coordination” and “5. Neural resonance
theory.”

3.3.2. Dynamic attending and perception-action
coordination

To model dynamic attending, Eqs. 1, 2 served as a quantitative
model of attentional entrainment. To capture the precision of

temporal expectations, an “attentional pulse” was added and
defined probabilistically as

f (φ, κ) =
1

I0 (κ)
exp (κ cos 2πφ) (3)

which corresponds to the von Mises distribution (Figures 5A, B;
see also Figure 1C). I0(κ) denotes the modified Bessel function
of order zero. When the temporal predictions are accurate, the
attentional pulse becomes narrower in time, modeling increased
precision of temporal predictions. The dynamics of attentional
focus is included as a third dynamical equation to estimate the
concentration parameter κ of the von Mises distribution (for
details, see Large and Jones, 1999; Large and Palmer, 2002).
The attentional pulse enabled quantitative modeling of temporal
predictions in time and pitch discrimination tasks.

This model (Figures 5A, B) inspired a number of studies
showing that a predictable rhythmic context facilitates perceptual
processing of a subsequent acoustic event, with highest accuracy
for targets occurring in-phase with the rhythm (Jones et al.,
2002; see also Large and Jones, 1999; Barnes and Jones, 2000;
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FIGURE 5

(A) The Dynamic Attending Theory model (DAT) consists of a limit-cycle oscillator and with a circular probability density that together model an
“attending rhythm” that targets attention in time [adapted from Large and Jones (1999)]. (B) The energy distribution (a von Mises distribution) for the
DAT model for different values of κ, the width of the distribution, which is a parameter that reflects attentional focus around the expected phase
value of zero [top; adapted from Large and Jones (1999)]. The active non-linearity of the canonical model can function as the attentional pulse in a
more neurally realistic model, and the amplitude (r) plays the same role as κ in the DAT model [bottom; see the section “5.2.2. A canonical model”
and Eq. 8; (Large et al., 2010)]. (C) The effect of a regular versus an irregular timing cue on a pitch discrimination task. Performance is explained by a
quadratic function that reflects expectation but only in the condition with a regular timing cue [adapted from Jones et al. (2002)]. (D) Results for a
study where non-human primates carried out a visual discrimination task in a stream of visual stimuli timed around the delta-band of cortical
oscillations [adapted from Lakatos et al. (2008)].

Jones et al., 2006). In one study (Figure 5C) pitch changes were
better detected when an event occurred at an expected time,
compared with early or late. This pattern of results has since
been replicated in multiple behavioral studies (see Henry and
Herrmann, 2014; Hickok et al., 2015; Haegens and Zion Golumbic,
2018), including in the visual domain (Correa and Nobre, 2008;
Auksztulewicz et al., 2019; see also Rohenkohl et al., 2012;
Rohenkohl et al., 2014). Moreover, early studies in primates
(Schroeder and Lakatos, 2009; Figure 5D) and humans (Stefanics
et al., 2010) directly linked facilitation of perceptual processing
(e.g., reaction time) to the phase of measured neural oscillations.
Such results provided critical support for underlying models of
entrained neural oscillation, but emphasized the need for more
physiologically realistic models of neural oscillation.

A number of studies have linked beat perception in musical
rhythms and dynamic allocation of attention to motor system
activity (e.g., Phillips-Silver and Trainor, 2005; Chen et al., 2008a;
Fujioka et al., 2009, 2012; Grahn and Rowe, 2009; Morillon et al.,
2014). One such study on perception and action showed that active
engagement of the motor-system by tapping along with a reference
rhythm enhances the processing of on-beat targets and suppression

of off-beat distractors compared to a passive-listening condition
(Morillon et al., 2014). The Active Sensing Hypothesis proposed
that perception occurs actively via oscillatory motor sampling
routines (Schroeder et al., 2010; Henry et al., 2014; Morillon et al.,
2014). Such findings have informed the development of neural
resonance theory (section “5. Neural resonance theory”; e.g., Large
and Snyder, 2009; Large et al., 2015), and led to testing of the
theories using perception-action coordination tasks.

Perception-action tasks provide much more fine-grained
behavioral data than is possible with perception and attention
tasks. Adults can synchronize in-phase at a wide range of tempos,
from around 5 Hz (p = 200 ms; Repp, 2003; ≥8 Hz if tapping a
subharmonic) down to 0.3 Hz (p = 3,333 ms) and probably lower
(see Repp and Doggett, 2007). At slower frequencies (∼2 Hz and
lower) people can either synchronize or syncopate (deGuzman and
Kelso, 1991), reflecting bistable dynamics.

In one widely used paradigm, subjects synchronize finger taps
(in-phase) with an isochronous rhythm. Once a steady-state phase
is achieved (Repp, 2001a,b, 2003, 2008; Large et al., 2002), a
phase or tempo perturbation is introduced, and relaxation back to
steady-state is measured (Figure 6A). People respond quickly and
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FIGURE 6

(A) Responses to phase (blue) or tempo (red) perturbations in a synchronization task (thin lines: individual trial; thick lines: grand average). Note that
steady state synchronization also displays NMA [adapted from Wei et al. (2022)]. (B) The phase reset function in an oscillator model (black) as a
function of relative phase with respect to the stimulus, versus the reset in a timekeeper model (blue). (C) An oscillator model (line with small markers)
can explain asynchronies in a synchronization task where the stimulus speeds up or slows down (B,C) [adapted from Loehr et al. (2011)]. (D) Piano
roll notation (as in Figure 1A) of a piano performance 3-part invention in B-flat by J.S Bach. (E) The relative phases of oscillators tracking beats at two
different metrical levels, the main beat and a subdivision, determining attentional pulse width. (F) Probabilities that an event is late, computed using
the attentional pulse, modeling perception of intended phrase boundaries (E,F) [adapted from Large and Palmer (2002)].

automatically to phase perturbations (either permanent phase shifts
or a shift of one event onset) of periodic sequences (Thaut et al.,
1998; Repp, 2001b, 2002a,b, 2003; Large et al., 2002) and relaxation
profiles match dynamical predictions. People also synchronize and
recover from perturbations at small integer ratio frequencies (i.e.,
mode-locking; Large et al., 2002; Repp, 2008). People can also
adapt to tempo perturbations (i.e., step changes of tempo; Large
et al., 2002); however, tempo tracking is under volitional control
and requires active attending (Repp, 2001a; Repp and Keller,
2004). People can also follow the periodic beat of complex musical
rhythms (Large and Kolen, 1994; Large and Palmer, 2002), even
those that have large changes in tempo (Rankin et al., 2009), as
predicted by dynamical models (Large and Palmer, 2002; Loehr
et al., 2011).

The seminal research of Haken et al. (1985) showed that anti-
phase tapping with a periodic stimulus is possible due to bistable
synchronization dynamics at low frequencies, but the anti-phase
mode loses stability via a nonequilibrium phase transition (similar
to gait transitions) if the stimulus frequency increases beyond a
critical value (or bifurcation point) where monostable dynamics
appear. Syncopation becomes difficult as the stimulus tempo
increases even for trained musicians (e.g., Keller and Repp, 2005;
Repp and Doggett, 2007). deGuzman and Kelso (1991) showed a

phase model, similar to Eq. 1 but with a slightly different coupling
function, could capture their findings.

The models considered here also allow for exploration of
conceptual questions such as the relationship between dynamical
systems approaches and information processing approaches.
A dynamical systems approach is meant to embody the notion
that a neural oscillator adapts its period to an external (forcing)
stimulus, as in Eqs. 1, 2. Information processing models suggest
that internal time-keepers measure and linearly track time intervals
(e.g., Wing and Kristofferson, 1973; Mates, 1994a,b; Vorberg and
Wing, 1996; van der Steen and Keller, 2013). One analysis showed
that the phase oscillator model of Eqs. 1, 2 is formally similar
to a linear time-keeper model (Jagacinski et al., 2000; Loehr
et al., 2011), such that for periodic (isochronous) stimuli and
small temporal perturbations, the predictions are nearly identical
(Figure 6B). However, when responding to larger perturbations,
linear models incorrectly predict symmetry in speeding up versus
slowing down, whereas oscillator models correctly predict an
asymmetry (Figure 6C; Loehr et al., 2011; see also Bose et al., 2019).

The critical difference, however, is that linear time-keeper
models capture only 1:1 synchronization, whereas oscillator models
capture mode-locking as well (Loehr et al., 2011). Mode-locking
implies the ability to coordinate with complex music-like rhythms
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(Figures 6D–F), thus modeling the perception of beat, meter, and
phrasing. In one study, oscillators entrained to complex rhythms
in classical piano performances (e.g., 3-part invention by JS Bach;
shown in Figure 6E) at multiple metric levels (Figure 6E). The
precise temporal expectancies embodied in the attentional pulse
were then used to model the perception of phrase boundaries
(Figure 6F), which are marked by slowing of tempo (i.e., phrase-
final lengthening; see Large and Palmer, 2002).

4. Inference models of rhythm
perception

A different computational approach to beat perception draws
on the theory of the Bayesian Brain and treats rhythm perception
as a process of probabilistic inference. Rather than asking what
neural mechanisms give rise to the percept of beats, it asks how
we can understand human rhythm perception as part of the brain’s
general strategy for making sense of the world. While this question
is essentially a cognitive one, models that address this question may
begin to guide and constrain models of the neural mechanisms that
must ultimately undergird them.

4.1. The Bayesian Brain and predictive
processing

One point of entry into the Bayesian Brain theory is the
proposition that organisms are well served by producing internal
dynamics corresponding to (or “representing”) the dynamic states
and unknown parameters of survival-relevant processes in the
world around them, which they can then use to predict what will
happen next. A formal version of this claim is called the Free Energy
Principle (Friston, 2010). In the case of rhythm perception, this
representation may encompass the static parameters and dynamic
states of any process that determines the timing and sequence
of auditory events: for example, the nature of an underlying
repetitive metrical pattern, the momentary phase and tempo of
that pattern, and the number and identities of distinct agents
generating the pattern. These representations can then inform
predictions of upcoming auditory events and guide the entrainment
of movements. Representing these variables might be survival-
relevant by, for example, allowing groups of humans to coordinate
their steps and actions rhythmically.

An attempt to represent the dynamic variables and parameters
underlying the generation of a rhythm encounters multiple levels
of ambiguity. A given rhythmic surface may admit multiple
possible organizing metrical structures (see, e.g., Figure 1A),
may be generated by one or by multiple agents, and may
be corrupted by temporal irregularity or noisy sensory delays
that obscure the underlying temporal structure. An idealized
approach to coping with this ambiguity is given by Bayes Rule,
a theorem from probability theory that describes an optimal
method of incorporating noisy, ambiguous sensory observations
into probabilistic estimates of underlying hidden (not directly
observable) variables. Bayes Rule transforms a “prior” (pre-
observation) distribution P(S) over a hidden state S into
a “posterior” (post-observation) distribution P(S|O) that has

incorporated an observation O. It does so using a “likelihood”
function P(O|S) that describes the probability of observation O
given any of the possible values of the hidden state S. The likelihood
function can be understood as a model of how the hidden state
generates observations, or a generative model.

The theory of the Bayesian Brain proposes that the brain
mimics the application of Bayes Rule as it integrates sensory data
into representations of the world, where generative models are
implicitly learned through a lifetime (or evolutionary history) of
interaction with the world. Note that the application of Bayes
Rule does not entail a Bayesian interpretation of probability more
generally – the essential contribution of Bayes rule in this context is
a formal method of weighting the influence of each new observation
by its precision relative to the precision of estimates preceding
the observation.

The theory of Predictive Processing elaborates on the Bayesian
Brain theory. It posits that the brain may be approximating Bayes
Rule by continuously changing representations to minimize the
difference between actual sensory input and the sensory input
predicted based on those representations (the “prediction error”;
Friston, 2005). Learning generative models can proceed similarly,
by gradually changing them to minimize prediction error on time
scales ranging from minutes to years, though some aspects of the
generative models may be innate. Importantly, unlike in static
Bayesian models of perception where statistically learned priors
are combined with single observations to yield percepts, Predictive
Processing proposes that inference proceeds dynamically, with the
posterior after one observation acting as the prior for the next.

4.2. Modeling rhythm perception as
inference

The qualitative groundwork for an inference theory of rhythm
was laid by Lerdahl and Jackendoff (1996), who framed music
cognition in terms of inference. In their view, the listener brings
a set of musical intuitions, some of them learned, to each musical
experience, and uses them to infer the latent structure underlying
the musical surface (including the rhythmic surface). In their
model, they treated meter as a hidden state to be inferred and upon
which to base auditory timing predictions. Vuust, Witek, and later
their coauthors (Vuust and Witek, 2014; Vuust et al., 2018) applied
ideas from Predictive Processing to the perception of musical
meter, positing that the perception of meter is determined through
variational Bayesian inference, i.e., prediction error minimization,
and arguing that this perspective accounts for various experimental
results.

Perhaps the first fully mathematically specified inference model
of rhythmic understanding took as the inferred hidden state the
number of distinct processes generating a combination of jittered
metronomic stimuli and used this model to account for participant
tapping behavior, which synchronized differently depending on the
phase proximity and jitter of the superimposed streams (Elliott
et al., 2014). More recently, a model was proposed for two-
participant synchronized tapping in which each tapper inferred
whether the self-generated and other-generated taps could best be
explained with two separate predictive models or one (“self-other
integration”; Heggli et al., 2021).
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4.3. PIPPET: a model of stimulus phase
inference

The PIPPET (Phase Inference from Point Process Event
Timing) model (Cannon, 2021) attempts to characterize rhythm
perception as a formal probabilistic inference process in continuous
time. In its simplest incarnation, it describes an observer’s process
of inferring the phase of a cyclically patterned stimulus given a
known tempo and meter.

4.3.1. Specifications
PIPPET starts with a generative model of rhythms based on a

specific underlying metrical pattern, e.g., the cycle of the beat or
of a group of multiple beats. Note that this generative model is
not necessarily the way in which an actual stimulus is generated;
instead, it describes the beliefs or expectations of the observer
for the purposes of creating a representation of the rhythm and
predicting future sound events. According to this generative model,
the unfolding of a rhythmic stimulus is driven by a dynamic “phase”
variable φt representing progress through the metrical pattern at
time t, e.g., the momentary phase (on the circle) of an ongoing
beat at time t. φt is expected to progress at a steady rate θ over
time (corresponding to the known tempo), but with Brownian
noise σWt representing the fact that even a perfectly steady rhythm
will seem slightly irregular to an observer with noisy internal
timekeeping:

dφ = θdt + σdWt

The observer is assumed to know or have already identified
an underlying metrical structure or “expectation template” for the
rhythm (e.g., duple or triple subdivisions of a steady beat). This
may be drawn from a library of learned expectation templates; we
discuss the process of choosing a template below. The metrical
pattern expected by the observer is represented by a function λ(φ)

from stimulus phase to the observer’s belief about the probability
of a sound event at that phase. This function consists of a sum of
a constant λ0, representing the probability of non-metrical sound
events, and a set of Gaussians, each with a mean φj representing
a characteristic phase at which the observer expects events to be
most probable, a scale λj representing the probability of events
associated with that characteristic phase, and a variance vj related
to the temporal precision with which events are expected to occur
at that phase (Figure 7A):

λ(φ) = λ0 +
∑
j

λj√
2πvj

e
−
(φ−φj)

2vj

According to the generative model, rhythmic events are
produced as an inhomogeneous point process with rate λ(φt). As
a map over cycle phase representing the position and precision of
temporal expectancy, this function serves a very similar purpose to
the “attentional pulse” in DAT models described above.

The observer uses the generative model to continuously infer
the stimulus phase φt , approximating a full distribution over
possible phases at time t with a Gaussian distribution with mean
µt and the variance Vt (Figure 7B):

P(φt = φ) =
1

√
2πVt

e−
(φ−µt )2

2Vt

The parameters µt and Vt of this distribution are adjusted
to make the best possible estimate of phase over time, handling
various sources of timing and event noise through a variant on
continuous-time Kalman filtering (Bucy and Joseph, 2005) that
amounts to a continuous application of Bayes rule, and that can
be described by the equations below.

At any time t, let 3 denote the observer’s expectancy (or
“subjective hazard function”) for sound events, defined as

3 =
∑
j

3j where3j = λje
−
(φj−µt )2

Vt+vj .

Define auxiliary variables µ̂ and V̂ :

µ̂ =
∑
j

3j

3
µ̂j where µ̂i =

Vt
−1µt + vj−1φj

Vt
−1 + vj−1

V̂ =
∑
j

3j

3
(V̂j + (µ̂− µ̂j)

2) where V̂j =
1

Vt
−1 + vj−1 .

A rule for the continuous evolution of the variables µt and Vt
between events can be defined:

dµ
dt
= θ+3(µ̂− µt)

dV
dt
= σ2

+3(V̂ − Vt)

as well as a rule for their instantaneous reset at any event time t
(Figure 7C):

µt → µ̂ and Vt → V̂.

The rapid resetting of µt can be understood as a partial
correction of inferred phase in response to event timing prediction
error. Although the theoretical roots of PIPPET are very different
from those of the oscillator models described here, the resulting
dynamics are rather similar: the dynamics of µt are closely
analogous the phase dynamics of a pulse-forced DAT model, and
the dynamics of Vt behave somewhat like the radial dynamics in a
damped oscillator like those that appear in neural resonance models
(with larger Vt corresponding to a smaller radius), as described in
the next section.

4.3.2. Behavior, implications, and extensions
PIPPET tracks stimulus phase and anticipates sound events

through steady rhythms (Figure 8A) and rhythms that are jittered
or perturbed in time (Figure 8B). The model accounts for listeners’
tendency to perceptually shift the phase of a beat if the rhythm
is overly syncopated: when phase uncertainty Vt is large, µ̂ is
strongly influenced by strong phase-specific expectations even
if the sound event occurs well before or after that expectation
(Figure 8C). Unlike other models of rhythm perception, PIPPET
accounts for the empirically observed tendency to perceive rhythms
with unexpected omissions as speeding up (Repp and Bruttomesso,
2009): the 3(µ̂− µt) term in the continuous evolution of µt
produces a slowing of estimated phase as it approaches a phase
where events are strongly expected, resulting in the next sound
seeming early (Figure 8D).
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FIGURE 7

Illustration of components of the PIPPET model. (A) In PIPPET,
rhythmic expectations are represented with one or more Gaussian
peaks on the circle, with means representing phases where events
are expected, e.g., φ1, and variances representing the temporal
precision of those expectations, e.g., v1. (B) The observer
approximates the phase of the cyclically patterned stimulus with a
Gaussian distribution over the circle, with mean (estimated phase)
µt and variance (uncertainty) Vt at time t. In the absence of sound
events or strong expectations, µt moves steadily around the circle
while Vt grows. (C) At a sound event, µt resets to µ̂, moving the
estimated phase closer to a nearby phase at which events are
expected, and Vt resets to V̂, adjusting the certainty about
phase as appropriate.

A key aspect of the model that follows from the formulation
of the problem as probabilistic inference is Vt , the continuous
estimate of the participant’s certainty about the rhythm’s phase.
This work predicts that a similar estimate should be physiologically
represented in the brain alongside an estimate of the phase of
the beat cycle. The model is agnostic to the neural nature of
µt and Vt , and could therefore be compatible with a range of
physiological mechanisms.

One exciting aspect of this model, and of probabilistic inference
approaches more generally, is that they can be used to specify
an exact degree of mismatch between expectations and reality.
A convenient measure of this mismatch is the information-
theoretic surprisal: if the probability of an occurrence is p, the
surprisal associated with it is−log(p). Thus, the surprisal associated
with a sound event is−log(3dt), a function of the subjective hazard
rate, i.e., the overall degree of expectancy. This is closely related to
the prediction error signal thought to drive Bayesian inference in
the theory of Predictive Processing.

PIPPET can be extended to include inference of stimulus tempo
as well as phase: when a dynamic tempo variable is incorporated
into the generative model of rhythm, a dynamic probabilistic
inference process can continuously estimate a joint distribution

over phase and tempo (Figure 9). Further, it has recently been
extended to include simultaneous inference about which of a library
of templates is relevant to the current rhythm (Kaplan et al., 2022).
In this extension, the collection of metrical patterns that the listener
has been enculturated to expect determines how they interpret,
tap along with, and reproduce the rhythmic surface, as has been
demonstrated in experiment (Jacoby and McDermott, 2017).

The PIPPET model takes an interesting stance on the
continuation of a beat. Continued rhythmic input is necessary
in order for the estimated distribution over stimulus phase not
to decay to a uniform distribution. However, that input can be
self-generated. If self-movement, e.g., stepping or finger-tapping,
is actuated based on the inferred rhythmic structure, then the
feedback from this movement can take the place of the stimulus
and keep the phase inference process going in a closed loop of
action and rhythm perception. Alternatively, auditory imagery,
presumably generated elsewhere in the brain and treated as input
to PIPPET, could take the place of motor feedback.

There has not yet been a published attempt to carefully fit
PIPPET’s parameters to rhythm perception data. However, such
an attempt is not unrealistic. The expectation template could be
estimated by manipulating timing at various levels of metrical
hierarchy and observing the effect on the timing of a subsequent tap
indicating the next expected beat (e.g., Repp and Doggett, 2007),
and the rate of accumulation of temporal uncertainty between
events could be worked out by doing a similar experiment across
multiple inter-beat intervals.

The Bayesian Brain perspective on rhythm perception will
not, in itself, reveal neural mechanisms of beat tracking and
anticipation. However, it has already demonstrated its potential
to highlight nuances of rhythm perception and model them at a
high level, providing guidance to the search for neural substrates.
Further, by identifying the cognitive significance of dynamic
variables as “representations” of hidden underlying processes, this
dynamic inference approach may provide a bridge from basic
mechanisms to complex musical behaviors that are easiest to specify
in terms of recognition of and interaction with musical structure.

5. Neural resonance theory

While Bayesian approaches model rhythm at the behavioral
level, in this section we explore the hypothesis that physiological
oscillations in large scale brain networks underlie rhythm
perception. We then ask what additional behavioral and neural
phenomena may be explained by this hypothesis. But this approach
brings with it significant challenges. Although the mechanisms of
spiking and oscillation in individual neurons have been well known
for some time (Hodgkin and Huxley, 1952; Izhikevich, 2007),
there remain a variety of approaches for understanding emergent
oscillations within large groups of neurons (see e.g., Ermentrout,
1998; Buzsáki, 2004; Wang, 2010; Breakspear, 2017; Senzai et al.,
2019).

While one type of research goal involves understanding how
oscillations at different levels of organization are generated, another
important goal is to understand how emergent oscillations in large
scale brain networks relate to perception, action, and cognition at
the behavioral level (Kelso, 2000). The Neural Resonance Theory
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FIGURE 8

Behavior of the PIPPET model. (A) The PIPPET algorithm continuously estimates the phase (drawn here on the real line rather than the circle)
underlying a syncopated rhythm. It does so by continuously evaluating the rhythm in light of an expectation template of times at which events are
more or less strongly expected (blue). Here, the template is chosen a priori; in an extended model, it may be inferred from among a library of such
expectation templates. For this relatively simple rhythm, estimated phase advances steadily. Uncertainty grows through rests since they provide no
information about the exact phase of the stimulus cycle. Uncertainty decreases each time a sound aligns with a moment of sound expectation, and
decreases substantially when a sound aligns with the strong and precise expectation on the beat, e.g., at 1 s. (B) Phase tracking is robust to timing
perturbations in the rhythm. Immediately following a phase shift (at 1 s), phase uncertainty Vt increases, but then it is reduced when the adjusted
phase is used to accurately predict a strongly expected event (at 1.4 s). (C) The listener may expect a steady stream of events or may learn irregular
patterns of expectations. Here, the listener expects uneven (swung) eighth notes. For this well-timed but excessively syncopated example rhythm,
excessive syncopation leads to a failure of phase tracking (straying from the diagonal) similar to that observed for high syncopation in humans. (D)
Strong expectations that are not met with auditory events (at 0.25, 0.5, and 0.75 s) cause the advance of estimated phase to become irregular. As a
result, an auditory event at 1 s seems early.

(NRT) approach begins with the observation that models of neural
oscillation share certain behavioral characteristics that can be
captured in generic models called normal forms, or canonical
models. It hypothesizes that the properties found at this level of
analysis are the key to explaining rhythmic behavior.

Neural Resonance Theory refers to the hypothesis that generic
properties of self-organized neuronal oscillations directly predict
behavioral level observations including rhythm perception,
temporal attention, and coordinated action. The theory’s
predictions arise from dynamical analysis of physiological models
of oscillations in large-scale cortical networks (see Hoppensteadt
and Izhikevich, 1996a,b; Breakspear, 2017). As such, NRT models
make additional predictions about the underlying physiology,

including local field potentials, and parameter regimes of the
underlying physiological dynamics.

5.1. Basic elements of NRT

5.1.1. Neural resonance
Nonlinear resonance refers broadly to synchronization, or

entrainment, of (nonlinear) neural oscillations (Pikovsky et al.,
2001; Large, 2008; Kim and Large, 2015). Although terms like
entrainment are sometimes used in the empirical literature to refer
merely to phase-alignment of neural signals, these terms are used
here in a stricter physical (or dynamical) sense, enabling predictions
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FIGURE 9

The extended PIPPET model infers both phase and tempo over the course of a tempo change from 1.1 beats per second to 0.9 beats per second. (A)
When the sequence of sound events slows down, the advance of estimated phase slows as well. See previous figure key. (B) This is because tempo
(and tempo uncertainty) are also being inferred as the sequence unfolds, and the estimated tempo drops when the rate of events slows. Initial and
final tempo are marked in dashed red lines. (C) Phase and tempo can be inferred simultaneously because the model tracks a joint distribution over
phase (X-axis, projected from the circle onto the real line) and tempo (Y-axis). The contours represent level sets of a multivariate Gaussian
distribution over phase/tempo state space, strobed over time. At each event, the prior distribution (red) updates to a posterior (green) that
incorporates a likelihood function based on the phases at which events are expected.

about behavior and physiology that arise from dynamical analysis
of nonlinear oscillation.

5.1.2. Mode locking
Importantly, neural resonance predicts more than phase-

alignment with rhythmic stimuli; it predicts mode-locking of neural
oscillations. Mode-locking, in turn, predicts structural constraints
in perception, attention, and coordinated action. Mode-locking
can explain, for example, how we perceive a periodic beat in a
complex (multi-frequency) rhythm (Large et al., 2015), whereas
phase-alignment in linear systems cannot (see e.g., Pikovsky et al.,
2001; Loehr et al., 2011).

5.1.3. Neural plasticity
Synaptic plasticity is an important means by which the brain

adapts and learns through exposure to environmental information.
Here we describe two primary mechanisms by which adaptation
may occur: Hebbian learning via synaptic plasticity, and behavioral
timescale adaptation of individual oscillator parameters, such as
natural frequency.

5.1.4. Transmission delay
Transmission delays are ubiquitous in the brain, representing

another generic feature of neural dynamics. But how can we
perform synchronized activities, such as play music together, or
anticipate events in a rhythm in the presence of time delays? Recent
work suggests that such behavioral and perceptual feats take place
not in spite of time delays, but because of them (Stephen et al.,
2008; Stepp and Turvey, 2010). While seemingly counter-intuitive,
dynamical systems can anticipate or expect events in the external
world to which it is coupled, without a need to explicitly model the
environment or predict the future.

5.2. NRT: oscillatory models from series
expansions

Phase models based on circle map dynamics, introduced
in section “3. Models for time-keeping, beat generation and
beat perception,” have been used to describe phenomena
including beat perception (Large and Kolen, 1994), dynamic
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FIGURE 10

(A) The left panel shows pyramidal and inhibitory neurons present and interacting across a cortical column. The center panel shows how a
traditional spiking neural model treats each neuron as a unit that is individually modeled. The right panel shows a neural mass model (NMM), where
population dynamics are averaged to a low-dimensional differential equation for each class of neurons [modified from Breakspear (2017)]. (B) The
oscillatory dynamics of two-dimensional Wilson-Cowan (left) and a canonical oscillator (right) model, driven by a periodic sinusoidal stimulus
[adapted from Large (2008)]. (C–F) Amplitude vector field for a canonical oscillator in a critical Hopf regime, (D) a supercritical Hopf regime, and
(E,F) saddle-node bifurcation of periodic orbits regimes. Attractors and repellers are indicated by red dots and red circles, respectively. Arrows show
direction of trajectories [adapted from Kim and Large (2015)]. (G–J) Stability regions for a canonical oscillator as a function of sinusoidal forcing
strength in panel (G) a critical Hopf regime, (H) a supercritical Hopf regime, (I) saddle-node bifurcation of periodic orbits regimes. Colors indicate
stability type [adapted from Kim and Large (2015)].

attending (Large and Jones, 1999), perception-action coordination
(deGuzman and Kelso, 1991), and tempo invariance (Large and
Palmer, 2002). Inclusion of period correcting dynamics (e.g.,
Large and Jones, 1999; Large and Palmer, 2002) allowed these
models to be robust to stimuli that change tempo. In some
models, an “attentional pulse” described when in time events
in an acoustic stimulus were expected to occur as well as the
precision of temporal expectations. A related “canonical” model
was derived from a physiological model of oscillation in cortical
networks (Wilson and Cowan, 1973; Hoppensteadt and Izhikevich,
1996a,b; Large et al., 2010), and includes both amplitude and phase
dynamics. The inclusion of realistic amplitude dynamics enriches
the behavioral predictions of phase models and has also led to
models that include Hebbian learning and neural time-delays.

5.2.1. Relation to mechanistic cortical oscillation
models

Phase models represented important steps forward in thinking
about what kind of neural dynamics may underlie dynamic

attending and perception-action coordination. However, the
formalism described in section “3.3.1. Circle-map phase oscillator
models,” specifically the absence of amplitude dynamics, limits
applicability to neural and behavioral data. Alternatively, neural
mass models (also called excitation-inhibition, or E-I models,
e.g., Wilson and Cowan, 1973; Hoppensteadt and Izhikevich,
1996a) characterize neural oscillations in networks of interacting
excitatory and inhibitory neural populations. Models of large-scale
brain dynamics (larger than a single neural oscillation) can then
be based on the study of self-organized oscillation in collective
neural behavior (see Breakspear, 2017 for an overview) in which
oscillations have both amplitude and phase (e.g., Large et al.,
2010; see Figures 10A, B). Below, we describe a derivation of a
canonical model from a neural mass model, and then expand this
into a network model with learning and address the role of time
delays.

Neural mass models approximate groups of neurons by their
average properties and interactions. One example is the well-
known Wilson-Cowan model (Wilson and Cowan, 1973), which
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describes the dynamics of interactions between populations of
simple excitatory and inhibitory model neurons. Both limit cycle
behavior, i.e. neural oscillations, and stimulus-dependent evoked
responses are captured in this model.

du
dτ
= − u+ S(ρu + au− bv+ xu(τ)) (4)

dv
dτ
= − v+ S(ρv + cu− dv+ xv(τ))

Here, u is the firing rate of an excitatory population, and v is
the firing rate of an inhibitory population. a, b, c, and d are intrinsic
parameters, ρu and ρv are bifurcation parameters, and xu(τ) and
xv(τ) are afferent input to the oscillator.

5.2.2. A canonical model
On the surface, neural mass models appear quite distinct

from the sine circle map used in section “3.3.1. Circle-map
phase oscillator models.” However, there is a systematic
relationship. One approach to understanding their behavior
is to derive a normal form. When the neural mass model
is near a Hopf bifurcation, we can reduce it to the Hopf
normal form via a coordinate transformation and a Taylor
expansion about a fixed point (equilibrium), followed by
truncation of higher order terms after averaging over slow
time (Ermentrout and Cowan, 1979; Hoppensteadt and Izhikevich,
1997).

dz
dt
= z(a+ b1|z|2)+ x(t)+H.O.T.

where z = reiφ is complex-valued oscillator state, a = α+

iω and b1 = β1 + iδ1 are coefficients to the linear and cubic
terms, respectively, x(t) is an external rhythmic input that may
contain multiple frequencies, and t = ετ is slow time, and H.O.T.
represents higher order terms. Eq. 5 can then be transformed to
separately describe the dynamics of amplitude r and phase φ:

dr
dt
= r(α+ β1r2)+ x(t) cosφ (5)

dφ
dt
= ω+ δr2

−
x(t)
r

sinφ (6)

In this formulation, the parameters are behaviorally
meaningful, α is the bifurcation parameter, ω is the natural
frequency, β1is nonlinear damping, and δ is a detuning parameter
that captures the dependence of frequency on amplitude. This
model is systematically related to the phase model, assuming a
limit cycle oscillation (α � 0) and discrete input impulses (see
Large, 2008).

Normal form models are useful in their own right, for example
as models of outer hair cells in the cochlea (e.g., Eguíluz et al., 2000).
However, by truncating higher order terms important properties
of the neural models are lost, most importantly mode-locking,
which is critical in the NRT framework. However, using the same
principles as normal form analysis, a fully expanded canonical
model for a neural mass oscillation near a Hopf bifurcation can be
derived (Large et al., 2010). For example, the following expanded

form contains the input terms for all two-frequency (k:m) relations
between an oscillator and a sinusoidal input:

dz
dt
= z(a+ b1|z|2 + b2|z|4 + ...)+ c11x+ c12xz + c13xz2

+ ...

c21x2
+ c22x2z + c23x2z2

+ ... (7)

In the original expanded form in Large et al. (2010), the relative
strengths of high-order terms are expressed by powers of the
parameter ∈. Eq. 8 is a rescaled form without ∈ in which oscillation
amplitude is normalized (|z| < 1; Kim and Large, 2021). This
model displays rich dynamics and has several interesting properties
that make it useful for modeling and predicting rhythmic behaviors.
The fully expanded model can be decomposed to study specific
properties, and to create minimal models of empirical phenomena.

In terms of the input expansion, each term in Eq. 8, which
takes the form xkzm−1, corresponds to a different k:m mode-
lock: 1:1, 1:2, 1:3, . . ., 2:1, 2:2, 2:3, . . . This leads to analyses like
that in Kim and Large (2019). Eq. 8 includes an infinite series
of input terms, each for a different frequency relation, because it
is assumed that the stimulus frequency is unknown. When the
frequency relation is known, the canonical model can include only
one input term (called resonant monomial). Figure 10B compares
an oscillation in the Wilson Cowan model with an oscillation in
the fully expanded model. Note that the limit cycle is transformed
into a circle, making behavior-level analyses straightforward (Kim
and Large, 2015). Four different parameter regimes are available for
describing different types of driven behavior (Figures 10C-F). Note
that the canonical model can display a Hopf bifurcation and also a
saddle-node bifurcation of periodic orbits (also called a double limit
cycle bifurcation), as E-I models do (Hoppensteadt and Izhikevich,
1997; Kim and Large, 2015). Moreover, the amplitude dynamics
changes the phase dynamics (Figures 10G-J; see Kim and Large,
2015).

The full expansion of the E-I model has two infinite series, one
for the intrinsic dynamics and another for the input, assuming that
b2 = b3 = ... = bn, and c = c11 = c12 = ... = c21 = ... = ckm.
Both can be summed and written in the form:

dz
dt
= z

(
a+ b1|z|2 + b2

|z|4

1− |z|2

)
+ c

x
1− x

1
1− z

(8)

which makes it possible to simulate the full canonical model
directly. This is not the most general form, but suffices to fit a wide
range of data. These properties combine to provide a model that
can be analyzed to make predictions about rhythmic behavior, as
described below.

In terms of modeling dynamic attending, the canonical
model provides an important link to the neural level. The phase
model (Eq. 1) is systematically related to the phase of the
canonical model (Large, 2008) but the canonical model includes
an amplitude dimension. Amplitude dynamics provides multiple
parameter regimes for entrained oscillation beyond limit cycle
dynamics, which have often been assumed to be the only possibility
in empirical research (e.g., Lakatos et al., 2019). Moreover,
the continuous time model includes an “active nonlinearity,”
A(z) = Re(1/(1− z)) (cf., Eq. 9; see Large et al., 2010) which
depends on the amplitude of the oscillation. As the amplitude
of the oscillation increases, reflecting successful predictions, A(z)
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becomes peakier (see Figure 5B, bottom), similar to the attentional
pulse. Moreover, A(z) can actually be considered a circular
probability density function – akin to the von Mises distribution –
because the area under the curve for one cycle is unity. In other
words, an attentional pulse function arises in the derivation of
the canonical oscillator from neural mass models. Additionally,
because it appears in the input term, it also functions as a temporal
receptive field (Large and Kolen, 1994; Large and Palmer, 2002).

Behavioral timescale adaptation of frequency has been studied
in various neural oscillator models (Righetti et al., 2006; Roman
et al., 2019). Frequency adaptation is similar to period adaptation
in DAT models, but is more appropriate to the differential equation
framework. Lambert et al. (2016; Eq. 10) proposed extending neural
resonance models to include a slow elastic return to the preferred
natural frequency, which helps with stability, giving the following
form:

dω
dt
= − cωx(t)A(z)/r − ce

ω− ωo

ω
(9)

where cω is adaptation strength, ce is elasticity strength, ω0 is
preferred natural frequency, and x(t) is an external rhythmic input
that may contain multiple frequencies. Thus, the single canonical
oscillator with frequency adaptation can track rhythms that include
phase and frequency perturbations as with earlier models (i.e.,
Large and Jones, 1999).

5.2.3. Networks and learning
Up to this point, we have described single oscillations, as

though behavior were governed by a single neural oscillator with
a well-defined natural frequency that may adapt to input. For
some experiments, this serves as a sufficient minimal model.
However, in a more general framework, we may postulate multiple
oscillatory circuits with a range of frequencies that interact within a
network, as illustrated in Figure 11A. This more general framework
is more physiologically realistic (Buzsáki and Draguhn, 2004;
Buzsáki, 2006; Pittman-Polletta et al., 2021), and provides realistic
predictions about EEG and MEG responses to complex rhythms,
while making behavioral predictions about the perception of pulse
and meter. However, modeling networks requires consideration of
the roles of learning as well as neural time delays.

The single-oscillation model of Eq. 9 can be generalized to a
network model by assuming a gradient of frequencies, which may
include the delta and/or theta band frequencies as follows:

τi
dzi
dt
= zi

(
ai + bi|zi|2 +

di|zi|4

1− |zi|2

)
+

∑
j6=i

cij
zj

1− zj
1

1− zi
(10)

where τi = 2π/ωi is the period of the ith oscillator, ai = αi +

2πi, bi = β1i + iδ1i, di = β2i + iδ2i, and cij is a complex
coefficient representing the strength and phase of the connection
from the jth oscillator to the ith oscillator. In such a network,
rather than individual oscillations adapting frequency over a wide
range to match the stimulus frequency, the amplitude peaks within
a network are determined by the stimulus frequencies. These
networks can consist of E-I oscillators or a network of canonical
oscillators, and the behaviors in the two models are comparable (see
Figure 11B; Large et al., 2010). Thanks to mathematical tractability,
the canonical model allows close analysis of nonlinear resonance in
gradient frequency neural networks (Figure 11C; Kim and Large,
2019).

In neural mass models such as the Wilson-Cowan model,
synaptic connections between oscillatory units determine their
phase relations (Figure 11D). When synaptic connections are
made plastic with Hebbian learning, neural mass models can learn
and retain the phase relationships between frequency components
in external signals (Hoppensteadt and Izhikevich, 1996b). In
the canonical network model, connections within and between
networks can be learned given a rule of the following form:

τij
dcij
dt
= − γijcij + κij

zi
1− zi

zj
1− zj

(11)

where τij is the time constant for learning, γij is the decay rate, and
κij is the learning rate (Kim and Large, 2021). According to the
multifrequency Hebbian learning rule, a connection strengthens
(i.e., |cij| increases) when connected oscillators are stably mode
locked. In addition, the phase of the connection (Arg cij) converges
to the relative phase maintained between the oscillators. In this
way, the network can learn and remember a multifrequency signal,
such as a musical rhythm, as a pattern of nonlinear resonance
among frequencies (Figure 11E). Finally, real neural networks also
have time-delays, and an important goal for future research is to
fully incorporate time delays into our models (see section “6.2.1.
Transmission delay and negative mean asynchrony”).

In the next sections, we consider how to extend these models
in light of the fact that multiple brain areas interact for rhythm
processing, and we address the questions of how complex rhythms
may be learned, produced, and coordinated.

6. Complex rhythms and multi-area
modeling

A single heterogeneous-frequency oscillator network may be
insufficient to explain complex rhythmic phenomena such as the
ability to extract a pulse frequency not present in the input rhythm
(Large et al., 2015). In this section we describe approaches to
integrating multiple networks or brain areas to account for more
complex aspects of rhythmic behavior.

6.1. Rhythm perception involves multiple
brain areas

As cited in the section “2. Neuroscience of rhythm processing,”
imaging studies provide evidence for a number of areas that
interact to predict upcoming sounds. Patel and Iversen (2014)
proposed a phenomenological conceptual model (ASAP) that
proposes that the motor system is integral to priming the sensory
system to make timing judgments. More recently, Cannon and
Patel (2021) suggested a neurophysiological implementation of
the motor component of the ASAP scheme (Figure 12), perhaps
analogous to the motor subcircuit of the Egger et al. (2020) model.
They describe a recurrent neural network in Supplementary Motor
Area (SMA) that entrains to auditory input at a beat level and that
is embedded in a multi-area brain loop through supplementary
motor area, thalamus, and basal ganglia that can serve to provide
higher level metrical patterning and sequencing. This organization
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FIGURE 11

Network models, mode-locking, and learning. (A) Two gradient frequency neural networks: a Wilson-Cowan network (an E-I type neural mass
model, top) and a canonical network (bottom). (B) Despite different levels of mathematical abstraction, both network models show qualitatively
identical dynamics in response to a sinusoidal input, with strong resonances at the stimulus frequency (1:1) and its harmonics (2:1 and 3:1) and a
subharmonic (1:2). From Large et al. (2010). (C) The Arnold tongues (resonance regions) for nonlinear resonances in a canonical network driven by a
sinusoidal input. From Kim and Large (2019). (D) Synaptic connections within (vertical) and between (horizontal and diagonal) oscillatory units in a
coupled neural mass model. (E) Connections formed between canonical oscillators in a gradient frequency network after Hebbian learning. From
Kim and Large (2021).

allows the SMA network to recognize and generate rhythm only
at characteristic beat time scales, offloading higher-level structure
to striatal networks known to be important for motor sequencing.
Input to SMA along this pathway also may help SMA maintain
a specific tempo through complex rhythms and during beat
continuation.

6.2. Structure and perception in NRT
network models

To account for empirical finding on the involvement of
both motor and auditory networks, Large and collaborators
(Large et al., 2015) have proposed a model that includes two
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FIGURE 12

Basal ganglia sequences the beat-tracking trajectories in
supplementary motor area (SMA). Neural firing rates in SMA follow a
trajectory which tracks and anticipates progress through a beat
cycle, informing auditory event predictions including the beat itself
and other sounds locked to the cycle (such as a subdivision of the
beat, indicated by the “&” symbol on the trajectory). The
specifications of this trajectory, including tempo and subdivision,
are determined by selective disinhibition by the basal ganglia via the
“direct pathway”. A population specific to an intermediate tempo is
active in dorsal striatum (blue), as opposed to one specific to a
slower tempo (red). Acting through the internal segment of the
globus pallidus (GPi), this population disinhibits a thalamic
population, which provides SMA with excitation specific to that
trajectory (blue) and not, for example, a slower one (gray). Auditory
prediction errors act to update the phase of cyclical activity in SMA
(phase correction) and update the active population in striatum
(tempo correction).

heterogeneous-frequency networks, one for the dynamics of
auditory cortex, and a second for motor cortex (e.g., SMA),
and bidirectional coupling between the networks reflects learning
of the lowest-order modes (2:1, 3:1, 1:2, and 1:3; see Eqs. 11,
12; Figure 13A). Amplitude dynamics of the canonical model
are exploited to posit different parameter regimes for the two
networks. Auditory dynamics operate near a Hopf bifurcation
(Figures 10C, D; see e.g., Lakatos et al., 2013), making rhythmic
responses in the auditory network essentially transient. Motor
dynamics operate near a saddle-node bifurcation of periodic
orbits (Figures 10E, F), so that each subpopulation can display
transient response (fixed point dynamic) or a sustained response
(limit cycle dynamics), with the two separated by a bottleneck
threshold. Stimulation that is strong enough and long enough
can trigger sustained motor network activity, similar to a pattern
generator circuit (Kopell and Ermentrout, 1988; Marder and
Bucher, 2001; Yuste et al., 2005; Guertin, 2009). Such a model
could explain synchronization-continuation behavior, because
a periodic auditory stimulus would trigger a sustained limit
cycle in the motor network. It could also explain perception
of musical rhythm, such that the stimulus triggers multiple,
coupled limit cycles to embody the perception of metrical
structure.

This model was tested using “missing-pulse” rhythms, in which
the perception of pulse and meter require nonlinear responses
(Large et al., 2015). Figure 13B shows the mean field response
of auditory (bottom) and motor network (top) to a missing pulse
rhythm. Frequency analysis of the acoustic stimulus shows no
energy in the stimulus rhythm at 2 Hz – the hypothetical pulse

frequency – or at 1 Hz – a subharmonic metrical frequency.
Note that in these parameter regimes the auditory network rather
faithfully reproduces the acoustic input, while the motor response
contains a strong periodic component that corresponds to the
hypothetical pulse of the input rhythm.

Experiments in human participants (Figures 13C, D) revealed
that the hypothetical pulse (2 Hz) is perceived most often in
these rhythms, and that pulse phase is bistable, also matching
model predictions. Moreover, some subjects do not perceive a
pulse in these highly syncopated rhythms (cf., Palmer et al., 2014).
A follow-up MEG experiment verified that some subjects showed
a strong neural response at the pulse frequency, while others
did not (Figure 13E; Tal et al., 2017). Moreover, the amplitude
of the 2 Hz neural responses matched performance in the pulse
perception task, suggesting that the perception of pulse depends on
the strength of the neural response. The model is also consistent
with a series of experiments that have measured the steady-
state evoked potential (SS-EP; see e.g., Nozaradan et al., 2011,
2012), showing enhancement of metrical frequencies in neural
responses to music-like rhythms, and responses at frequencies not
present in stimulus rhythms. Note that responses at the missing
pulse frequency rule out passive, linear responses (i.e., ERP’s)
because a linear response would similarly display a “missing pulse”
frequency (see Large et al., 2015; Haegens and Zion Golumbic,
2018).

6.2.1. Transmission delay and negative mean
asynchrony

In considering the behavior of brain networks, it is important
to also consider the existence of transmission delays. To our
knowledge, no network models of musical rhythm have included
such delays. However, one recent model has considered what the
consequence of a transmission delay may be in a reciprocally
connected network, using a single oscillator with delayed feedback
as a simplified model.

1
f
dz
dt
= z

(
α+ i2π+ β|z|2

)
+ x(t)−

d
f
z(t − τ) (12)

Here x(t) is a unit-magnitude complex-valued sinusoid (or
unit-magnitude square-wave) that captures the external stimulus,
and the delayed feedback term has strength d and a delay of τ

seconds. As a model of synchronization in the presence of delayed
feedback, it is able to reproduce the tendency of taps to precede
acoustic events, NMA (Repp, 2005). This type of anticipation is
known as “strong anticipation,” since it results from the physical
coupling of a system and its environment, and it does not depend
on an internal representation of the stimulus (Dubois, 2001; Stepp
and Turvey, 2010). This model provides an excellent fit to data
from a detailed investigation of NMA (see Repp and Doggett,
2007; Roman et al., 2019). It reproduced the anticipatory tendencies
empirically observed in musicians and nonmusicians for stimuli
with different tempi (Figure 13F; see Repp and Doggett, 2007).
It was also able to explain behavioral data from two turn-taking
synchronization tasks between two humans with and without an
additional acoustic transmission delay between participants (Chafe
et al., 2010; Nowicki et al., 2013). Future models will be required to
assess the effect of delays in more realistic networks.

Interestingly, the neuro-mechanistic model described above in
the section “3. Models for time-keeping, beat generation and beat
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FIGURE 13

(A) A model of interacting oscillators in two reciprocally connected networks (auditory and motor). The auditory network can be driven with musical
rhythmic stimuli, activating also the motor network due to the reciprocal connections. (B) The FFT of two rhythms (black line) and activation of the
model’s motor network (blue line) when the model is driven by each: the top shows an isochronous rhythm 2 Hz and the bottom shows a “missing
pulse” rhythm (i.e., a type of syncopated rhythm where there is no energy at the frequency of the perceived beat of 2 Hz). (C) Distributions of the
tapping frequency of humans (red) while tapping with the isochronous or the “missing pulse” rhythm. (D) The phase of humans tapping with the
isochronous or the “missing pulse” rhythm, computed at the trial (blue o’s) and “grand average” levels [red x’s; (A–D) adapted from Large et al.
(2015)]. (E) The MEG spectrum of two individuals listening to “missing pulse” rhythms, one who was able to perceive the pulse of the syncopated
rhythm faster (left, blue) than the other (center, red). The right panel shows correlation between the 2 Hz MEG amplitude and the time to start
tapping (TTT) at 2 Hz [adapted from Tal et al. (2017)]. (F) NMA (means, and standard errors, and linear regressions) in musicians and non-musicians
who tapped to an isochronous stimulus. Fits of an oscillator model with delayed feedback (Roman et al., 2019), for musicians (green) and
non-musicians (yellow) [adapted from Roman et al. (2019)].

perception” (Bose et al., 2019) displays an intrinsic NMA, but not
due to time-delay, rather due to its mechanism for measuring
time intervals. Simulations of the Egger model (Egger et al.,
2020) also exhibit a modest NMA, however the mechanism is
not well-understood. It is not yet known whether either model
is flexible enough to capture the empirical results (e.g., Repp and
Doggett, 2007). PIPPET’s objective of aligning inferred phase with
incoming events seems incompatible with this type of persistent
synchronization error, although with the addition of motor output,
it may ultimately prove compatible with the NMA findings.

7. Learning and development

The premature infant brain tracks beat and meter frequencies
in auditory rhythms (Edalati et al., 2023), suggesting an innate
characteristic of human neural activity. At the same time, rhythm
processing is highly influenced by experience. Rhythms are
experienced even before birth, for example, in the maternal heart
beat, and through rhythmic movements, both of the mother but
also from the fetus’s own arm and leg movements that have
spring-like properties. After birth, infants become enculturated
(specialized) at processing the beat and metrical structures in the
music in their environment, and will even regularize rhythmic
input to fit these metrical structures, suggesting that learning plays
a large role in rhythm perception (Hannon and Trainor, 2007;

Trainor and Marsh-Rollo, 2019). The PIPPET model proposes that
rhythm perception develops through the refinement of patterns
of temporal expectancy that act as generative models describing
the probability of sound events at each phase of a meter or
beat. The process of developing these expectations has not yet
been modeled – instead, the model is “seeded” with one or more
expectation patterns, which may represent any combination of
learned and innate patterning with arbitrary temporal structure.
NRT instead proposes that rhythm perception develops through
learning of connections between circuits that are inherently
oscillatory. This process allows learning through experience, but
also explains why some rhythmic relationships (i.e., smaller integer
ratios; cf., Kim and Large, 2019, 2021) are easier to learn.

The NRT framework incorporates learning as attunement of
oscillatory networks to the rhythmic structure of the environment
on multiple time-scales. When formalized in physiologically
informed dynamical models based on Hebbian learning
(Hoppensteadt and Izhikevich, 1996b; Kim and Large, 2021), this
provides a theoretical framework for generating testable empirical
predictions about musical rhythm development (Figure 13A; see
Tichko et al., 2022). Building on the meter perception model above,
this theoretical framework hypothesizes rhythmic attunement on
(at least) three distinct timescales. On a timescale of seconds, people
attune to the frequency and structure of ongoing musical rhythms
(e.g., tempo adaptation; see Roman et al., 2023). On a timescale
of months, children’s perceptual systems attune to culture-specific
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rhythmic structures (e.g., within-network connections; Tichko and
Large, 2019). And at a timescale of years, children learn to flexibly
coordinate movements with complex rhythms in culture-specific
ways (between-network connections; Tichko et al., 2022).

As an example of perceptual learning, consider that a perceived
beat need not be purely periodic. Non-isochronous meters
(Brãiloiu, 1984; London, 2012) – which occur in musics from
southeastern Europe, Mali, Turkey, and India (Clayton, 2008;
Polak, 2010; Bates, 2011; Kirilov, 2015) – display categorically
unequal durations between beats (Figure 14A). In learning the
meter of musical rhythms, infants’ and children’s perceptual
systems become attuned to culture-specific rhythmic patterns,
displaying a kind of perceptual fine-tuning called perceptual
narrowing (Hannon and Trehub, 2005). In one model, an untrained
auditory network mean field veridically reproduced every rhythm,
as in the model of Large et al. (2015). However, during
unsupervised learning, the network learned connections between
the oscillators activated by the training rhythms (Figure 14A).
This affected the networks’ responses to violations of the
metrical structure of native and nonnative rhythms, a pattern of
findings that mirrored the behavioral data on infants’ perceptual
narrowing to musical rhythms (Tichko and Large, 2019). Thus,
the network attuned to the rhythmic structure of either Western
or non-Western training rhythms through the self-organization
of network connections within the auditory network. Another
model demonstrated that diffuse (not frequency-specific) low
amplitude connections between vestibular and auditory networks
can bootstrap plasticity. In a seminal study, Phillips-Silver and
Trainor (2005) showed that infants could be biased in their
perception of a bistable rhythm (i.e., Figure 1A) by bouncing
them according to the desired pulse. In the network model, during
a training phase input from the vestibular network affected the
response of the auditory network. During the test phase infants
preferred the pulse that corresponded to the bouncing, and this
behavior was captured by the model due to short term plasticity
(Tichko et al., 2021; see Figure 14B).

At the faster time scale, an oscillator’s natural frequency can
represent the endogenous rhythms that manifest as an individual’s
spontaneous rates of action (Scheurich et al., 2018). Evidence
suggests that an individual’s spontaneous rate constantly acts as a
pulling force, and that anticipation and lagging can be explained by
whether the spontaneous rate is slower or faster than the stimulus
(Scheurich et al., 2018; Zamm et al., 2018). Recently, Roman et al.
(2023) developed a neural resonance model with elastic frequency
learning that can explain how musicians synchronize with a musical
stimulus at a frequency different from their spontaneous rates of
movement. The model’s fast frequency Hebbian learning allows the
oscillator to match the stimulus frequency, but the elastic force
pulls the learned frequency toward the system’s original natural
frequency (Ermentrout, 1991; Savinov et al., 2021). This model
was able to explain human behavioral data relating spontaneous
rates with anticipatory asynchronies between human actions and
different musical stimuli (Figure 14C; Scheurich et al., 2018).
Moreover, the model explained a musician’s tendency to return
to their spontaneous rate during a continuation task (after a
brief period of synchronization with a stimulus), and the absolute
asynchronies observed when pairs of individuals with different
spontaneous rates synchronize with each other (Zamm et al., 2018).

8. Discussion

The ability of humans to track temporal patterns, extract or
infer a hierarchy of regular beats, predict upcoming sensory events,
adapt to temporal perturbations, adjust to tempo changes, and
synchronize movements to rhythmic beats is impressive and while
many questions have been addressed, many questions reman. Here
we explored several basic modeling approaches to understanding
musical rhythms: small biophysical or rate-based neuronal
networks, probability-based Bayesian models, entrainment-based
oscillator models, and heterogeneous frequency networks of neural
oscillators with Hebbian learning. Neurophysiological measures
show that intrinsic brain oscillations are ubiquitous over a range
of frequencies (including delta, alpha, beta, gamma), suggesting
that neural oscillations are fundamental to how the brain works.
In the section “3. Models for time-keeping, beat generation and
beat perception,” at a basic level we described two types of models:
information processing and dynamical systems models in which
a model’s phase and period variables adapt to synchronize with
an external sound sequence. Neuro-mechanistic models, either
based on the Hodgkin-Huxley formalism or on a population
firing rate approach are designed to be real-time adaptive, with
adjustable biophysical parameters that affect the internal beat
generator’s period and/or phase to achieve matching with the
stimulus. The proposed adjustment rules of each of these models
provide both motivation, as well as challenges for how to formulate
behavioral time scale plasticity in neuronal terms to instantiate
these learning rules. With the exception of entrainment-based
oscillator models, these models in their current forms, however,
assume an isochronous temporal stimulus. The entrainment-based
oscillator models, however, can capture the perception of an
isochronous beat within a complex musical rhythm. In the section
“4. Inference models of rhythm perception” we reviewed Bayesian
approaches to rhythm perception, focusing on a recent model
in which the phase, tempo, and meter of an underlying cycle is
inferred from a rhythmic surface. The key feature of this approach
is real-time progression and adaptation of a probability distribution
(an internal template) for the phases at which events are expected.
Rather than linking behavior to mechanism, Bayesian approaches
link behavior to an inference problem that the behavior seems
calibrated to solve. As a result, the Bayesian model of rhythm
perception is open to multiple possible physical instantiations. In
the section “5. Neural resonance theory,” we reviewed a specific
dynamical systems approach involving Neural Resonance Theory
(NRT) and the mathematical concept of entrainment. The model
formulation is canonical, describing the generic properties of a
periodically forced system that is capable of displaying oscillations.
By analogy to the local canonical description of behavior near
a Hopf bifurcation, one obtains a differential equation in which
the terms in the vector field are in the form of an infinite series
expansion that has been truncated. This local description provides
properties of synchronization modes (e.g., n:m entrainment)
and thereby predicts structural constraints in perception. The
coefficients in the canonical form are available for fitting to
match behavioral phenomena but are not directly interpretable as
neuronal level parameters. However, they may be interpreted as
physiological hypotheses about the parameter regimes of network
oscillations. A parameterized network also provides predictions
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FIGURE 14

Learning and development. (A) Mean-field response of the untrained network to Western and Balkan rhythms (below each musical notation).
Connection matrices and oscillator amplitudes after unsupervised learning (right from each music notation). From Tichko and Large (2019). (B)
Resonant responses (i.e., average oscillatory activity) of models trained with either duple or triple auditory-vestibular stimulation (red and blue,
respectively; duple- and triple-related frequencies are marked with asterisks) or auditory-only stimulation (green) during the final half of the training
procedure (left). Resonant responses for the trained models during the final half of the test procedure with auditory-only stimulation (right). From
Tichko et al. (2021). (C) Simulation and prediction of the mean adjusted asynchrony between a musician’s performance and a metronome beat for
different tempi relative to the musician’s spontaneous motor tempo (SMT). F30: metronome period 30% shorter than the SMT, S15: metronome
period 15% longer than the SMT, etc. Behavioral data from Scheurich et al. (2018) (left). Simulation results for a neural resonance model with elastic
frequency learning, with predictions for 45% faster and slower conditions (middle). Model predictions for different natural (spontaneous) periods
(right). From Roman et al. (2023).

about the structure of local field potentials, as measured for
example in the SS-EP. In the sections “6. Complex rhythms and
multi-area modeling” and “7. Learning and development,” we
explored modeling approaches to more complex aspects of rhythm
processing, including interactions between brain areas and the
effects of experience and learning.

Each of these approaches leaves open questions about
physiological mechanisms and neural instantiation, including
specifics about the interactions between or coordination across the
levels of brain areas, circuits, and cellular and synaptic properties.
The neuro-mechanistic models that we reviewed do not yet address
questions such as how a beat can be perceived from a complex
rhythmic surface that may contain syncopation or lack power
at the beat frequency. Thus, it is of interest to ask whether the
insights from higher-level modeling inform the formulation of
biophysically based network models (such as Wilson-Cowan like
firing rate models) capable of addressing similar issues for complex
rhythms. Conversely, a solution may require integration across
levels. For example, can a network with biophysically plausible
units be shown to operate in parameter regimes that are consistent
with Neural Resonance Theory and/or Bayesian formulations?
At the cellular and synaptic level, what are candidate ionic and
synaptic currents that allow a neural network to operate over
the relevant frequency range of roughly 0.5–8 Hz? Constraints
at each higher level of modeling may affect possible lower-level
instantiations, and lower levels may themselves turn out to impose
neuro-mechanistic constraints on rhythm perception. Thus, the
prospect of creating a beat-tracking model on the level of neural
mechanisms remains an exciting challenge.

Models of beat perception operate on a variety of different time
scales that reflect the complicated nature of both the music that
is being learned, but also, the complexities of our physiological
system. Adaptable time-keeper and oscillator-based models operate

on short time scales on the order of hundreds of milliseconds
to seconds (e.g., Large and Jones, 1999; Bose et al., 2019; Egger
et al., 2020). At this time-scale, they address real-time issues
such as resynchronization to perturbations, tempo changes, and
distractors. Models based on Neural Resonance Theory (NRT;
Large et al., 2015; Roman et al., 2023) and a Bayesian approach
(PIPPET; Cannon, 2021) can also operate on short time scales; the
former to display entrainment to a given temporal sound sequence
and the latter to match expectations and predictions to a known
expectation template. At longer time-scales of minutes to years,
Hebbian-type synaptic plasticity comes into play and underlies
learning in NRT, where connection weights between oscillatory
elements are formed to account for priming, perceptual narrowing,
development of synchronization capabilities, and enculturation. In
the Bayesian approach, expectation templates are formed on longer
time-scales of months to years to account for musical enculturation.

8.1. Relationship between Bayesian and
oscillator models

The Bayesian PIPPET algorithm for perceptual entrainment
to rhythm takes the form of a hybrid continuous/discrete
dynamical system that closely resembles a pulse-forced oscillator.
Work is currently underway that will explore this relationship
more fully. However, PIPPET, and more generally, the dynamic
Bayesian modeling approach, is fundamentally different from
oscillator-based modeling approaches in its commitment to the
concept of representation, allowing it to interface more closely
with the conceptual toolbox of cognitive psychology. Bayesian
modeling speaks explicitly about “expectation” and “prediction,”
considering these to be the fundamental goal of the nervous
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system. The model’s expectations and predictions are formulated
relative to a preexisting or an assumed set of familiar rhythmic
“templates” that depend on exposure. It further provides a general
statistical framework within which to model the role of learning,
development, and enculturation in entrainment to rhythm (Kaplan
et al., 2022) and offers a mathematical language in which one
can easily describe learned connections between rhythm and
instrumental voice or pitch (e.g., Pazdera and Trainor, 2022).

Neural Resonance Theory, on the other hand, conceives of
perception, attention, generation, and entrainment of oscillations
as manifestations of the properties of oscillatory neural circuits.
It eschews the traditional notion of a cognitive representation.
A neural oscillation is not a representation of a musical rhythm;
rather, it is an actual rhythm that operates in accordance with
physical laws; thus, it should be considered a physical embodiment,
not an abstract representation (see Tichko et al., 2022). This implies
that predictions about perception, action, and cognition can and
should be derived from dynamical analysis of neurophysiological
oscillation. NRT adds two other generic features of neural
physiology, neural plasticity and transmission delay, providing
detailed fits to empirical data on perception, attention, generation,
and synchronization of musical rhythms.

Real-time adaptable neuro-mechanistic models that operate
based on error-correction and learning rules can be viewed as
preliminary attempts to provide linkage between the behavioral
level and plausible neural mechanisms (Bose et al., 2019; Egger
et al., 2020). Doelling et al. (2022) observe that a neuro-
mechanistic firing-rate oscillator model with an adaptive frequency
can reproduce aspects of participant performance that seem to
follow Bayesian principles (see also Egger et al., 2020). Indeed,
what is interesting is how closely recent Bayesian models of
musical rhythm resemble oscillator models. For example, each has
a phase and frequency that adapt to an incoming stimulus. Further,
Bayesian and canonical models both view temporal expectation
as an important aspect of rhythm cognition (Large and Jones,
1999; Cannon, 2021). Heggli et al. (2019) take an oscillator-based
dynamical systems approach to modeling dyadic entrainment,
but speak in the language of the Bayesian Brain. However,
Bayesian models and entrainment-based oscillator models do
have important differences. Bayesian models do not constrain the
range of rhythmic patterns that can be learned and entrained to.
Oscillator models are naturally amenable to mode-locking in which
small integer ratio relationships are exhibited over a wide range
of the relevant parameter space. As a result, oscillatory network
models predict that small integer ratio relationships are more stable
in perception and attention, easier to coordinate in performance
and synchronization, and easier to learn in development. Stability
in turn predicts that smaller integer relationships may be more
common among the musical traditions of the world (cf., Clayton,
2008; Polak, 2010; Bates, 2011; Kirilov, 2015).

8.2. Future developments

In describing the various models, we have focused on stimulus
and behavioral timescales in the delta frequency band. The models
do not explicitly address how rhythmic input also associates with
higher frequency oscillations present in the neural response. Both

β (15–30 Hz) and γ (>30 Hz) band rhythms have been observed
in auditory cortex during musical beat perception (Snyder and
Large, 2005; Zanto et al., 2005; Fujioka et al., 2009, 2012). Beta
band (centered around 20 Hz) has been of particular interest in
the auditory domain, with studies showing that presentation of a
rhythmic input leads to periodic fluctuations in beta power that
also phase align to the stimulus. Because beta frequencies are
much faster than those of typical ERPs, and are not found in
the stimulus itself, it is useful for isolating internal computational
mechanisms. It has been shown that in ambiguous rhythms, where
strong beats in the metrical hierarchy could be perceived to be
in different places in the sequence, beta responses are largest in
response to events perceived (or imagined) to be strong (Iversen
et al., 2009). Beta analyses can also help determine whether neural
oscillations reflect endogenous predictive processes. For example,
in an isochronous sequence, beta power decreases after the onset
of each beat and rebounds to reach maximum power around the
expected time of the next beat. Fujioka et al. (2012) presented
isochronous sequences of tones at different tempos and showed
that the time course of beta decrease after each tone was similar
across tempos, but the slope of the beta power rebound was
shallower for slower tempos, suggesting a neural mechanism for
prediction of the expected time of the next beat. Chang et al.
(2019) showed on a trial-by-trial basis that the depth of beta
modulation prior to a tone in an isochronous sequence predicted
the size of ERP components following that tone that relate to
prediction error. Further, phase-amplitude coupling between lower
and higher frequencies is also commonly found (e.g., delta phase
and beta power for auditory rhythms). Its function is still under
debate, but it may represent coordination of different neural
systems (e.g., Hyafil et al., 2015; Chang et al., 2019). For auditory
rhythms, delta-beta coupling may be particularly important as beta
frequencies are prominently associated with the motor system and
delta frequencies are in the range in which humans perceive beats
in music and language, so this coupling may reflect auditory-
motor loops used for accomplishing auditory rhythmic timing.
Although biophysical models of cross-frequency coupling have
been proposed (e.g., Malerba and Kopell, 2013; Stanley et al.,
2019), none have specifically addressed the role of cross-frequency
coupling in musical rhythm, and this represents a challenge for
future research. The development of neurophysiologically plausible
models will need to take into account the different roles of
oscillations at these different frequencies.

Another challenge that has not been systematically addressed
is the phenomenon of negative mean asynchrony (NMA) and a
mechanistic explanation for it. NMA has been found in simulations
of some of the models reviewed in this paper (Bose et al.,
2019; Roman et al., 2019; Egger et al., 2020). In the neuro-
mechanistic models (Bose et al., 2019; Egger et al., 2020), the
phase correction sought to produce zero phase difference. However,
in both models, NMA is an emergent property. In Bose et al.
(2019), NMA is attributed to the non-linear frequency response
properties of the biophysical model together with an asymmetry
in a phase-learning rule. The explanation of NMA in the Egger
et al. (2020) model remains unanswered. Roman et al. (2019)
explained the NMA observed in human empirical data as being
the consequence of transmission delays. While they used a single
oscillator with delayed feedback, future work could use a network-
based description to simulate oscillatory activity in specific brain
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areas and the transmission delay between them. Furthermore,
empirical evidence shows that even though NMA is observed
when individuals tap with an isochronous metronome (Repp and
Doggett, 2007), it shrinks or is absent when tapping the pulse of
more complicated rhythms (Large et al., 2015). Compared to a
metronome, spectral analysis reveals that complex rhythms may
display little or no energy at the beat frequency, even if energy is
prominent at integer-ratio frequencies (Large et al., 2015). Thus for
a complex rhythm, the absence of NMA could result from enhanced
oscillator resonance with a rhythm’s frequency components other
than the beat, and interference between them.

9. Conclusion

Our dynamic experiences of musical rhythm, which can be
observed in psychological, developmental, neurophysiological, and
neuroimaging experiments, provide numerous challenges and
questions for theorists. There is a wealth of behavioral data on
perception, attention, and coordination of musical rhythms, and an
abundance of EEG, MEG, and functional imaging data in humans.
However, in regard to neurophysiological data there is a paucity
of recordings at the cell and circuit levels due in large part to the
lack of available experimental animal models; only a few individual
animals have been shown capable of perceiving rhythmicity as in
music. Hence, there is a great deal of evidence to guide modeling
at the behavioral and brain macroscopic, multi-areal levels, but
relatively few guideposts for development of neuro-mechanistic
dynamical models of rhythmic perception at local network or areal-
interaction level. We view these circumstances as providing creative
opportunities for development of theory and models from multiple
approaches and at multiple levels.

It seems clear that behavioral models of musical rhythm must
account for temporal expectancy, adaptation, and learning, as
Bayesian models do. Bayesian models eschew neural mechanisms
and instead work to describe rhythm perception in terms of general
principles of perception and cognition. In doing so, they also
account for behavioral phenomena such as expectation-related time
distortion and the experience of groove by showing that they follow
from these first principles.

Oscillator models that emphasize resonance and mode-locking
also capture temporal expectancy. Additionally these types of
models can account for structural constraints in perception,
attention, and coordination. By considering physiological
mechanisms of which we can be fairly certain such as neural
oscillations, Hebbian plasticity, and neural transmission delays,
such models have been used to account for an array of behavioral,
developmental, and neurophysiological data on musical rhythm.
These generic aspects of neurophysiology, focused on musical
rhythm using the techniques of dynamical systems analysis,
provides a powerful theoretical framework, and makes additional
predictions about perceptual structures, neurophysiological
responses, and developmental milestones, which have only
begun to be tested.

But important questions remain open. At the level of neural
systems, how can we account for the many brain areas that are
activated by rhythmic stimuli and rhythmic tasks? Should we
think in terms of interaction of oscillatory networks in multiple

brain areas? Or do the excitatory and inhibitory populations –
whose interactions generate oscillations – reside in different areas?
Could some areas provide signals for controlling the parameters
of oscillations, turning them on and off or controlling frequency?
Perhaps some circuits oscillate, while others measure rhythmic time
intervals. At the level of detailed neural circuits, relatively little is
known that is directly relevant to this type of human behavior.
Since the constraints are relatively modest, future researchers
may explore plausible neuronal and circuit level mechanisms that
can help reveal elemental neural processes and make additional
behavioral predictions. Detailed knowledge about specific circuits
and systems will be invaluable in developing clinical applications.

We are at the early stages of understanding rhythm perception
at a detailed neural level and the roadway is wide. Here, we have
described some basic phenomena of rhythm pattern perception and
approaches to modeling them in an attempt to discern essential
dynamical mechanisms. Although it seems indisputable that neural
oscillations are involved in musical rhythm perception, we seek to
be able to distinguish between or identify overlap among viable
formulations that adapt in real-time and learn over longer time-
scales. We hope this review tempts the reader to join in pursuing
the formulation and development of models that can help address
the many interesting questions about rhythm perception.
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Glossary

Term Definition
Rhythm Time series with temporal predictability
Rhythmic surface; rhythmic pattern Time series of sounds and silences in an auditory pattern
Beat A sequence of perceived events (often periodic) that is implicit in a rhythm pattern
Metrical hierarchy (or “metrical structure” or
meter)

Hierarchy of beats in which n successive beats are grouped at one level, forming a single
(down-) beat at a higher level

Pulse The main beat; the beat level a listener would tap when synchronizing with a rhythm
Tempo (or “musical tempo”) The beat frequency, in beats per minute (bpm), or beats per second (bps, or Hz)
Isochronous sequence A sequence of events that are evenly spaced in time
Synchronization-continuation Synchronizing with a repetitive pattern and continuing production (perceptual or finger

tapping) after stimulus removal
Negative mean asynchrony (NMA) The tendency for a person’s movements to anticipate rhythmic events in synchronization

tasks (e.g., tapping to the pulse); calculated by averaging the differences between the agent’s
timing and the true stimulus timing.

Syncopation A type of rhythmic complexity in which events tend not to coincide with the musical pulse
Entrainment The response of an ongoing, self-sustained oscillation to an external periodic force

resulting in temporal alignment between the two
Bayesian brain hypothesis Framework that sees the brain as a machine that computes statistical properties of past

events to optimize beliefs, expectations, and behavior for the future
Generative model Uses Bayes rule to estimate the probability of a hidden state (h) given an observation (o).

p(h| o) = p(o| h)p(h)/p(o)
Expectation template Describes the temporal structure of the observer’s event expectations, and the degree to

which an event is anticipated at time t
Canonical model (normal form) A simple mathematical form that captures the common properties of a family of more

detailed models that share certain local dynamics (such as being near a certain type of
bifurcation)

Resonance A general concept encompassing both passive resonance of linear systems and active
resonance of nonlinear systems. Linear systems show resonant responses only at stimulus
frequency (phase-locking), while nonlinear systems also resonate at integer ratios and
combination frequencies (mode-locking).

Mode-locking Phase alignment between different frequencies in which k cycles of one oscillation
consistently align with m cycles of another oscillation (called k:m mode-locking)

Hebbian learning Mechanism to update connections between neurons in a network, in response to a
stimulus or change in intrinsic network activity

Transmission delay A time delay in communication between neural areas, biophysically explained by long-
range axonal transmission of information

Frontiers in Computational Neuroscience 30 frontiersin.org

https://doi.org/10.3389/fncom.2023.1151895
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

	Dynamic models for musical rhythm perception and coordination
	1. Introduction
	2. Neuroscience of rhythm processing
	3. Models for time-keeping, beat generation, and beat perception
	3.1. Algorithmic time-keeper models
	3.2. Neuro-mechanistic oscillator models 
	3.3. Phase oscillator models and dynamic attending theory (DAT)
	3.3.1. Circle map phase oscillators models
	3.3.2. Dynamic attending and perception-action coordination


	4. Inference models of rhythm perception
	4.1. The Bayesian Brain and predictive processing
	4.2. Modeling rhythm perception as inference
	4.3. PIPPET: a model of stimulus phase inference
	4.3.1. Specifications
	4.3.2. Behavior, implications, and extensions


	5. Neural resonance theory
	5.1. Basic elements of NRT
	5.1.1. Neural resonance
	5.1.2. Mode locking
	5.1.3. Neural plasticity
	5.1.4. Transmission delay

	5.2. NRT: oscillatory models from series expansions
	5.2.1. Relation to mechanistic cortical oscillation models 
	5.2.2. A canonical model
	5.2.3. Networks and learning


	6. Complex rhythms and multi-area modeling
	6.1. Rhythm perception involves multiple brain areas
	6.2. Structure and perception in NRT network models
	6.2.1. Transmission delay and negative mean asynchrony


	7. Learning and development
	8. Discussion
	8.1. Relationship between Bayesian and oscillator models
	8.2. Future developments

	9. Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References
	Glossary


