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Abstract

Music is an inherently social activity that allows people to share experiences
and feel connected with one another. There has been little progress in designing
artificial partners exhibiting a similar social experience as playing with another
person. Neural network architectures that implement generative models, such as
large language models, are suited for producing musical scores. Playing music
socially, however, involves more than playing a score; it must complement the
other musicians’ ideas and keep time correctly. We addressed the question of
whether a convincing social experience is made possible by a generative model
trained to produce musical scores, not necessarily optimized for synchronization
and continuation. The network, a variational autoencoder trained on a large cor-
pus of digital scores, was adapted for a timed call-and-response task with a human
partner. Participants played piano with a human or artificial partner–in various
configurations–and rated the performance quality and first-person experience of
self-other integration. Overall, the artificial partners held promise but were rated
lower than human partners. The artificial partner with simplest design and high-
est similarity parameter was not rated differently from the human partners on
some measures, suggesting that interactive rather than generative sophistication
is important in enabling social AI.
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1 Introduction

The recent rise in popular interest in large language models (LLMs) has attracted con-
siderable attention to deep neural networks as possible basis for artificial intelligence
(AI). Such models are capable of taking questions about a very wide range of topics
and giving reasonably informed answers in natural language. More technically, they
are generative models that produce a response by estimating what would be the most
probable continuation of the input prompt given the statistical regularities in a large
training data set of text-based information [1].

Like language, music can be represented in a sequential format too, suggesting
that generative models implemented by deep neural networks can serve as the basis
for musical AI. The interest in academic research on application of AI to music has
been increasing steadily for the past ten years. 1 Most of the work has been focused
on generating, analyzing, and classifying music in ways that mimic human skill, and
evaluating musical AI by testing whether its compositions sound like they were writ-
ten by a particular composer. This is consistent with the overall modus operandi in
AI research, Turing’s imitation game, which is to design machines to mimic specific
human cognitive functions [2], despite historical evidence that truly groundbreaking
technology often emerges accidentally and in unexpected domains [3].

This approach does not address the social and collaborative aspects of music.
Throughout history and across cultures, music has most typically involved multiple
people engaging in music-making together as a social behavior. Therefore, an alterna-
tive approach is to test “[i]f a musician could ‘jam’ with an unseen Jam Factory and
with an unseen human musician for as long as desired and was unable to tell which
was the human, then, according to the Turing test, Jam Factory would have exhibited
‘intelligence’” [4]. While generative AI models are improving immensely in their capac-
ity to learn statistical patterns and produce visual art, speech, and music in various
styles, here we focus on musical interaction between a person and a neural network,
asking how the human experiences this interaction. Without diminishing the impor-
tance of deep background knowledge in enabling human social skills, we emphasize
the importance of inter-personal interaction and coordination of movement.

Collaborative music-making technology has the capacity to enable a wide range of
social activities because music is inherently social. The archaeological evidence dates
the use of musical instruments at least 30,000 years back, while singing and drumming
are probably even older [5]. Although musical behavior can be found in individuals
listening or playing alone, around the world it occurs mainly in groups ranging from
duets to hundreds of participants. Coordinated action is an essential aspect of group

1The citation count for peer-reviewed papers containing both ”music” and ”artificial intelligence” in their
titles and abstracts shows a steady increase: https://app.dimensions.ai/discover/publication?search mode=
content&search text=”artificialintelligence”ANDmusic&search type=kws&search field=text search.
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music-making, a defining aspect of social behavior, kinship, and group survival [6–
11], although the value of exact synchronization may vary from culture to culture and
across musical contexts [12–14]. Affiliation and cooperation among people increase
after they experience synchronous movement with each other [15–17]. Infants, without
having been exposed to an exhaustive musical repertoire, show early musical pref-
erences, social-emotional responses to music, and rate-sensitive motoric responses to
musical rhythm [18–21]. From an evolutionary perspective, many non-human species,
engage in vocal chorusing, in which individuals may increase survival either by coor-
dinating their chorusing (cooperating) or by trying to make their vocal signals stand
out from those of others (competing) [22–25]. While most musical behaviors may be
collective, humans also engage in individual music making, consistent with the idea
that music may have evolved from the collective to the individual. This relates to the
Vygotskian notion, popularized in cognitive science by Hutchins [26], that many cog-
nitive skills are social processes that have become internalized. The primacy of social
cognition implies that shared music performance precedes solo skills.

Musicians often report that when they are deeply engaged in group performance,
they can anticipate each other’s ideas and act as one. To study group music per-
formance, aspects of inter-personal experience need to be measured. To this end,
participants reported on their self-other integration [27] using an analogue visual scale
rather than relying on the participants’ verbal reports of their first-person experiences
and non-verbal interactions with their partners. An even stronger form of engagement
with performance is described as a state of flow [28]. Intuitively described as “losing
oneself in the action”, the flow state is associated with effortless concentration, peak
performance, productivity, and creativity [29]. Importantly, this state of absorption is
particularly relevant when musicians are playing together [30–32].

We designed a study to address the question whether participants enjoyed the expe-
rience of playing piano with an interactive turn-taking artificial partner. A pre-trained
multi-layer neural network optimized for time sequences was selected. MusicVAE,
openly accessible from Google Brain’s Magenta project, was trained on a large corpus
of recorded piano performances spanning multiple eras, genres, and cultural tradi-
tions [33]. MusicVAE has a capacity for competent reproduction of piano melodies,
achieving high musicality ratings, and has the beneficial property of smooth interpo-
lation within its latent space [34]. This means that it can generate unseen sequences
by sampling from a point in the latent space that has not been encountered during
training but sits between two training samples. Demonstrative examples are available
at [35] and our implementation is accessible at [36]. Two model parameters can be
used to fine tune its generative capabilities. A temperature parameter controls the
strength of fluctuations within the latent space, where higher temperature allows the
model to switch more freely between adjacent improvisations of the input. A similar-
ity parameter control how much the generative model is forced to try to imitate the
input.

We adapted MusicVAE models to play together with a human in a turn-taking
paradigm with short turns. We conducted a controlled experiment where participants
played piano with other participants or with the artificial partner, without blinding.
The instruction was to treat the task as a practice and improvisation session and to use
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the timed turn-taking to exchange ideas with the partner. The imitation (similarity)
and improvisation (temperature) parameters of the artificial partner were varied across
trials to test participants’ responses in different conditions. Specifically, there were two
levels of imitation, two levels of improvisation, and two levels of melody span. After
each trial, we collected the participants’ ratings of performance quality, creativity, and
whether the partner was perceived to be listening and responding in interesting ways.
To be more specific about the experience of togetherness in inter-personal interaction,
we collected ratings of self-other integration and flow.

2 Methods

2.1 Participants

The sample of participants consisted of twenty adults (N = 20, mean (SD) age of 33.8
(19.4) years, 17 female and 3 male). They were recruited from the department’s pool of
students participating for extra credit and from the laboratory’s list of members of the
local community who had volunteered to be experimental participants. The selection
criteria included previous experience playing piano and absence of known hearing or
motor disability.

2.2 Task

The score-free turn-taking task consisted of playing a short phrase on the piano,
stopping to listen to the partner’s response, and then resuming for another cycle
without a pause in between, see Figure 1. An individual turn lasted 8 seconds for
each participant in the duo (i.e., 16 seconds for the pair). Timing was controlled for
consistency by displaying a visual progress bar on the computer screen facing the
participants. The full trial lasted 112 seconds, equivalent to 7 full cycles of turn-taking.

The instructions were to try to respond in a musically meaningful way to the
partner, find a comfortable balance between repetition and improvisation and leading
and following, and allow the musical piece to emerge on the spot from this back-
and-forth performance and evolve freely. Most participants did not know each other
and those who did had never player together. They did not discuss what and how
they would play in advance, and avoided verbal interaction in the course of the trials.
Participants were restricted to playing with one hand and without simultaneous key
strokes constituting chords in order to match the monophonic output of the AI. Given
the lack of score or rehearsal and the presence of additional constraints on interaction
and possible musical structure, the performance consisted mostly of exchanging and
developing short melodies. To prepare for playing with the AI, participants were told
additionally that their partner could vary the extent to which it mimicked them or
improvised, how well it could match their musical ideas, and that it was restricted to
playing simple monophonic melodies.

In the human-human dyadic condition, participants sat side by side and played
two separate pianos. In the human-AI dyadic condition, each participant played the
same setup as in the human-human condition but the presence of the AI was indicated
visually on the screen by displaying a color-coded piano roll of the most recently
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Fig. 1: Visual representation of the tasks where (a) the human-human duo take turns
playing their individual pianos, as indicated on the screen by a diminishing coloured
bar labelled Player A and Player B; and (b) human-AI turns are similarly indicated
through a diminishing coloured bar, and coloured boxes representing the notes played
are scrolling upwards on the screen.

played keys, see Figure 1B. The partner was presented as a web browser application
called ’AI Dynamic Duet’ accessible at an address on our server [36]. The protocol was
approved by the institutional review board and participants signed informed consent
before performing the experiment.

2.3 Artificial Partner

The generative modeling of time sequences is a difficult challenge that has not received
as much attention as language models or fixed-size data structures such as images. The
MusicVAE is a set of pre-trained deep neural networks openly available from Google
Brain’s Magenta project [33]. They are optimized to function as generative models of
time sequences, specifically of MIDI notes, not of pure sound waveforms [37]. While
one of the main applications of machine and deep learning is to recognize and clas-
sify data structures, a generative model can be trained to reproduce time sequences.
The architecture proposed by Roberts et al. [34], Figure 2, combines RNN (LSTM
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Fig. 2: Schematic of the architecture used to train generative models of piano note
sequences. In training, the variational autoencoder is trying to reproduce the input
sequences from a curated dataset by encoding them, passing them through a lower
dimensional latent space with the form of a multivariate probability distribution,
and then decoding them. Later, the trained generative model can be used to mimic
or reconstruct input sequences as well as sample and interpolate between learned
sequences.

networks) encoders and decoders with hierarchical properties and a low-dimensional
probabilistic latent space in the middle [38, 39]. The information bottleneck in the mid-
dle of an autoencoder forces the network to extract high-level and, in theory, salient
features that allow it to handle unseen corpus samples. Once trained, the network can
be used to reproduce (reconstruct) or freely generate (sample) melodies in the styles
of the training corpus. Furthermore, the distributional character of the latent space
allows smooth interpolation. The autoencoder can interpolate between different train-
ing and input examples by activating a location in latent space that is intermediary
between their corresponding locations.

While piloting the study, we found that the full version of the generative model
with 16-bar input and output, albeit having the highest musical ratings [34], was
unsuitable for the interactive paradigm. Listening to 16-bar stretches of performance
interrupted the flow of turn-taking. In the experiment, we compared two models, one
trained on 2-bar and the other on 4-bar melody segments.

The array of models in the MusicVAE set were trained on a large curated corpus
of MIDI recordings [34]. Publicly accessible files were harvested by searching the web.
Over a million unique MIDI files with 4/4 time signature were selected and were
quantized to 16th notes. These were broken into an even larger dataset of unique
monophonic melodies by sectioning into 2-bars going in steps of 1 bar, excluding
longer rests. This resulted in 28 million samples of 2-bar monophonic melodies. The
same procedure was applied to create the 4-bar set. A smaller model with 4.4 million
parameters was trained on the 2-bar set and a larger one with 11.7 million parameters
on the 4-bar set.

2.4 Apparatus

Participants sat at a table on performance chairs. Two professional electronic pianos
with weighted keys (Roland FP80) were connected via the MIDI format to the same
computer. The computer played the synthesized piano sounds through a powered stu-
dio reference monitor (Yorkville Sound YSM5) to ensure acoustic consistency between
the human-human and human-AI conditions.
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2.5 Design

One factor of the design was the partner, consisting of a human-human condition and a
human-AI condition. The second factor was the configuration of the generative model
in the human-AI trials. The order of exposure to the partner condition was counter-
balanced within pairs. The order of exposure to the different AI configurations within
the human-AI block was randomized.

2.6 Measures

After each trial, a questionnaire collected participants’ ratings of their partner and
the quality of the joint performance. Each item rated a dimension of playing with
the partner on a 7-point scale. The items consisted of: Musicality, Realism, Ease to
interact with, Creativity and improvisation, How enjoyable was it to play together,
How interesting was the last trial.

Participants also evaluated their experience after each trial. Specifically, they com-
pleted questionnaires on self-other integration (IOS) with their partner [27] and the
short Flow State Scale (sFSS) [40]. The IOS consists of a seven-step visual scale indi-
cating integration in terms of the amount of overlap between two circles, ranging from
no integration and a score of 0 to full integration and a score of 6. The sFSS is a
questionnaire consisting of nine items rating different dimensions of the state of flow.
The items include questions such as ”I was completely focused on the task at hand”
or ”I did things spontaneously and automatically without having to think”. Each is
rated on a five-level scale from ”Strongly Disagree” to ”Strongly Agree”, and the nine
responses are converted to an average numerical score from 1 to 5.

2.7 Procedure

Participants were assigned to pairs by order of registering and arriving to perform the
experiment. Each participant performed a block of trials with a human partner and a
block of trials with an artificial partner. The participant arriving earlier performed a
block of human-AI trials and then a block of human-human trials with the participant
arriving later. Correspondingly, the participant arriving later performed the human-
human trials first and then the human-AI trials. Upon arrival and informed consent,
participants were given time to familiarize themselves with the piano, with the task,
and to practice playing familiar tunes from memory.

2.8 Analysis

We used linear mixed-effects modeling to compare the different configurations of the
AI partner against the human-human condition. The linear-mixed effects approach
benefits from the ability to account for individual variability and, importantly, can
accommodate unbalanced designs [41]. In the present design, each participant per-
formed one trial in each AI condition, and multiple trials in the human-human
condition.

A separate model was fitted for each dependent variable, but the model specifica-
tion was identical each time. It consisted of condition as a categorical predictor and
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random effects for the individual baseline and interaction with the predictors. The
human-human condition served as baseline, technically the intercept of the regression-
like model. The difference between the human-human trials and each of the AI
categories was tested in terms of the coefficient of the corresponding term in the
model, see Table 1. This means that each configuration of the artificial partner was
tested against the null hypothesis that its score is not different from the human-human
condition.

Two of the performance items, namely Musicality and Interesting, were excluded
from analysis due to high correlation with the other items.

3 Results

As Figure 3 shows, generally participants rated performance with the artificial partners
lower than with a human partner. This tended to be the case for each of the eight arti-
ficial partners that was tested, but two configurations were rated similarly as humans
on some measures. On Realism, all AI partners were rated significantly lower than the
baseline (i.e., human-human condition), except for the 2 bar, low temperature, high
similarity (2Bar/-T/+S) condition which was not significantly different (p = 0.202),
see Table 1a and Figure 3a. The measure easy to interact with was significantly lower
than the baseline for six configurations, but it was not significantly different in the
(2Bar/-T/+S) condition (p = 0.154) and the 2 bar, high temperature, high similarity
(2Bar/+T/+S) condition (p = 0.288), see Table 1b and Figure 3b. Ratings of cre-
ativity and improvisation were lower in five conditions and they were not significantly
different from baseline in three conditions: the 2Bar/+T/-S condition (p = 0.063), the
2Bar/+T/+S condition (p = 0.057), and the 4 bar, high temperature, high similarity
(4Bar/+T/+S) condition (p = 0.066), see Table 1c and Figure 3c. For all artificial
partners, the enjoyable scale was lower than baseline, see Table 1d and Figure 3d.

The measures of experience exhibited as similar pattern, with a general tendency
for lower scores in artificial partner conditions, but with the same two conditions
standing out, see Figure 4. Specifically, self-other integration was lower than baseline
in six conditions, and not significantly different in two conditions: 2Bar/-T/+S (p =
0.288) and the 2Bar/+T/+S (p = 0.581), see Table 1e and Figure 4a. The flow state
scale tended to be lower in artificial partner than in human partner conditions, see
Figure 4b, but most differences did not reach statistical significance, except for the 2
bar, low temperature, low similarity condition (p ¡ .05), see Table 1f.

4 Discussion

In this study, we focused on human interaction with a piano-playing artificial partner.
Instead of asking participants with prior piano experience to passively observe and
evaluate the music produced by an AI, we asked them to play together with it in
a turn-taking task. We then asked them to rate the quality of the interaction and
we took measures of self-other integration and flow. This approach is in line with
previous proposals for situated and embodied versions of the Turing test [42–44] and
for measures of emotional response and affiliation while coordinating with an artificial
rhythmic stimulus [45–47].
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Fig. 3: Ratings of performance quality. H: human-human performance. 2B: generative
model with a two-bar time span, 4B: generative model with a four-bar time span, -T:
low temperature, +T: high temperature, -S: low similarity, +S: high similarity.

We found that the smallest model trained on 2-bar melodies and configured with
high levels of imitation and either high or low levels of improvisation (2B,-T,+S and
2B,+T,+S) scored higher on measures of Realism and Ease to Interact with, approach-
ing the scores of human partners. Self-Other Integration in these same conditions was
also similar to human partners. These are promising results as they indicate that the
present approach with pre-trained generative models could enable an interactive turn-
taking musical experience. Yet, all configurations of the artificial network were rated
lower than the human partners on Enjoyment and Creativity. With respect to flow
state, all conditions of the artificial partner and human partner scored similarly in
the middle range of the scale. This suggests that the turn-taking task did not allow
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Table 1: Statistical models comparing configurations of the artificial partner with the
performance with a human partner. The baseline in the model was the human-human
condition, and the effects (standard errors in brackets) of the other conditions were
evaluated in terms of how ratings changed relative to the baseline. The 8 artificial
partner conditions were defined by crossing the factors of the AI, namely time span
(two bars and four bars: 2B/4B), tendency to improvise (low and high temperature:
-T/+T), and tendency to mimic the human input (low and high similarity: -S/+S).

(a) Realism (b) Easy to interact with (c) Creativity and Improvisation

Baseline (Human) 4.121 (.347)∗∗∗ 4.169 (.377)∗∗∗ 4.571 (.288)∗∗∗

2Bar -Temp +Sim −.490 (.370) −1.116 (.489)∗ −.518 (.349)
2Bar +Temp -Sim −2.016 (.409)∗∗∗ −.906 (.460)∗ −2.360 (.487)∗∗∗

2Bar -Temp -Sim −1.753 (.369)∗∗∗ −.906 (.355)∗ −2.203 (.440)∗∗∗

2Bar +Temp +Sim −.805 (.346)∗ −.906 (.448)∗ −.413 (.378)
4Bar -Temp +Sim −1.227 (.376)∗∗ −1.222 (.486)∗ −1.308 (.460)∗∗

4Bar +Temp -Sim −1.858 (.425)∗∗∗ −1.064 (.423)∗ −2.045 (.437)∗∗∗

4Bar -Temp -Sim −1.700 (.382)∗∗∗ −1.222 (.380)∗∗ −1.782 (.431)∗∗∗

4Bar +Temp +Sim −1.490 (.423)∗∗∗ −.801 (.410) −1.255 (.454)∗∗

(d) Enjoyable (e) Self-other Integration (f) Flow State Scale (short)

Baseline (Human) 5.036 (.296)∗∗∗ 3.472 (.273)∗∗∗ 3.964 (.159)∗∗∗

2Bar -Temp +Sim −1.299 (.397)∗∗ −.419 (.385) −.051 (.146)
2Bar +Temp -Sim −1.562 (.497)∗∗ −2.683 (.418)∗∗∗ −.168 (.131)
2Bar -Temp -Sim −1.667 (.479)∗∗∗ −2.577 (.316)∗∗∗ −.344 (.126)∗∗

2Bar +Temp +Sim −.930 (.380)∗ −.261 (.466) .030 (.141)
4Bar -Temp +Sim −1.193 (.372)∗∗ −1.630 (.339)∗∗∗ −.133 (.133)
4Bar +Temp -Sim −1.930 (.488)∗∗∗ −1.840 (.461)∗∗∗ −.204 (.137)
4Bar -Temp -Sim −1.457 (.470)∗∗ −2.209 (.403)∗∗∗ −.221 (.132)
4Bar +Temp +Sim −1.720 (.505)∗∗∗ −1.893 (.448)∗∗∗ −.250 (.136)

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

enough time and challenge for participants to settle in the sort of absorbed performance
associated with flow.

During debriefing, participants shared that the artificial partner was näıve and
limited but it was genuinely musical and interesting enough for them to use at home
as a practice tool. In theory, the autoencoder is capable of exhibiting good next-step
prediction. Participants observed that the artificial partner was trying to match and
improvise from their short melodies but it was not able to continue and complete the
ideas that they initiated; it was not sophisticated enough to re-create a rich musical
call-and-response game. In brief, the results are promising but they also indicate that
interactive performance is a difficult challenge for current frameworks in musical AI
designed for passive imitation of piano performance.

The objective of the study was to evaluate self-other merging and experience, not
recognition of the partner as in the original Turing test. Features responsible for the
differentiation of human- and machine-made sequences of sounds may not be the same
as features that enable inter-personal interaction. For this reason, we did not take
measures to blind participants with respect to the nature of their partner on each
trial. As generative models advance in sophistication, however, it will be important
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Fig. 4: Ratings of experience. H: human-human performance. 2B: generative model
with a two-bar time span, 4B: generative model with a four-bar time span, -T: low
temperature, +T: high temperature, -S: low similarity, +S: high similarity.

to revisit experiments such as the classic Turing test. Using the apparatus of the
current study, participants can be separated into individual rooms, unaware of the
identity of their partners. Future research can address this and, additionally, expand
the possibility for open-ended verbal feedback from the participants in the format of
a qualitative interview to help understand in more details inter-personal interaction
from their perspective.

The implicit assumption in the present study was that before a machine could play
music with a human, all relevant domain knowledge had to be squeezed into its software
brain first, and then interaction would be solved. We assumed that the first stage
had been achieved because a previous study by the designers of the MusicVAE found
that the largest, most hierarchical model was capable of producing 16-bar sequences
with musicality approaching human, as rated by listeners in a blind test [34]. In the
present interactive test, however, the trend was the opposite, favoring short and more
shallow models provided that they could respond immediately and adequately to the
human partner. Future attempts could be more productive if they aim to design an
AI directly for minimal interaction and then work on adding rich musical contexts,
possibly from continued experience with human partners.

The present study points to a potentially productive use of artificial music partners
as experimental apparatus in basic research on interpersonal coordination. The neu-
ral mechanisms involved in self-other segregation and integration during coordinated
rhythmic action are only beginning to be explored [48–54]. A common limitation in
this context is the closure of free variables; there is no way to experimentally control
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the task as each participant stands for an interactive stimulus for the other partic-
ipant. Inasmuch as simple rhythmic coordination is concerned, this problem can be
avoided by using an interactive and parametrically controllable oscillator or another
dynamic system, a so-called human dynamic clamp [45]. Generalizing this research to
music, however, requires richer and more realistic interactive partners. Such exper-
imental artificial partners may be feasible with current tools for generative neural
networks if they can be trained for interaction.

4.1 Interactive AI

”Our lives are not our own. From womb to tomb, we are bound to others, past and present,
and by each crime and every kindness, we birth our future.” Sonmi-451

The holy grail of research in AI has been to achieve strong AI, or artificial gen-
eral intelligence (AGI), defined in terms of autonomy, generalization of learning, and
understanding of the meaning and context in natural language, among others [55].
The goal of developing fully autonomous vehicles generated waves of excitement in the
last decade, yet the feasibility of this objective remains hotly debated and investment
in the industry decreased sharply [56, 57]. Neither are AI frameworks close to being
able to use analogical reasoning to generalize their knowledge to novel domains [58].
Finally, the full set of requirements for social AI can be very challenging, including
capacities such as communication of meaning and inference of the partner’s intentional
states [59].

In contrast, the conditions for inter-dependent human-machine problem solving are
already present [60]. For example, it is a more realistic scenario to deploy vehicles with
limited autonomy, expressed by the principle of human-in-the-loop control [61]. This is
applied when neither a human operator nor an artificial expert system acting alone is
capable of performing a given task as well as when the two are acting in collaboration
[60]. Winograd and Flores [62] famously introduced the idea that the separation of
subject (user) and object (machine) in human-computer interaction only appears in
aberrant circumstances when fluid task performance is perturbed by a workspace
malfunction. The case for the primacy of interaction over autonomous intelligence
argues that interactive and social AI can be useful even if it is designed to be task-
specific and inter-dependent with human partners [59, 63–68]. In what follows, we offer
ideas on what it may take to design interactive AI.

At early stages of development, there needs to be greater emphasis on ability of
the interactive AI to coordinate and synchronize with a human partner than on the
ability to differentiate between high-level musical characteristics (i.e., the historical
period and style of the musical piece). This is consistent with developmental trajec-
tories in infants. From an early age, the development of inter-personal coordination
skills and preferences for rhythmic style are honed by rhythmic interactions with their
caregivers [69, 70]. Needless to say, the evidence for a role of prediction-driven tem-
poral expectations in cognition suggests that an artificial player with the ability to
contextualize the partner’s stylistic and cultural preferences, without necessarily hav-
ing comprehensive knowledge of every possible piece, may achieve better expectations
of temporal variations [71, 72].
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A limitation of the generative model employed in the present study is that its
architecture lacks recurrent loops between feed-forward passes. This means that it does
not retain information between turns and, effectively, each turn is a separate trial from
its perspective. Some chat bots may have the sophistication to retain all recent turns
and use them as secondary input to further constrain their generated output. Yet,
these architectures lack the ability to incorporate rhythmic musical timing. Arguably,
in human interpersonal interaction, both the timing and the form of the response are
crucial in enabling the sense of togetherness. For the same reason, the turn-taking
format is limiting because music making around the world typically involves people
coordinating their playing at the same time. Designing generative models with an
emphasis not only the content but also on its timing would require different network
architectures, possibly incorporating recurrent neural networks optimized for dynamic
synchronization. The ability to control synchronization parametrically will allow also
to test whether the importance of imitation (similarity) observed here will generalize.
Such a paradigm can be implemented with an exclusive focus on sound like here, or
with an added visual modality by linking performance to an avatar with a body in
virtual reality.

For minimal interactive AI to be functional, it is sufficient that it enables coor-
dination patterns in the shared space with the human partner; the pleasure of
spontaneously falling in synchrony with someone else constitutes meaningful social
experience regardless of the agency of the participants [73]. There are examples of
modest artificial systems designed to induce spontaneous synchronization in the con-
text of rhythmic behaviors. These usually have practical objectives such as the practice
of social skills and rapport, improvement of gait and other motor function, or facili-
tation of musical performance [74–77]. These examples are rudimentary because they
embody only one aspect of musical performance, namely entrainment of coupled oscil-
lators by a pre-defined regular beat. Yet, such a constrained definition of interaction
makes it possible to take advantage of progress made in related fields. Synchronization
and control of dynamic systems has been investigated extensively in robotics, control
theory, and applied dynamic systems theory. Recently, deep neural networks were used
to learn the evolution of dynamic equations and extend the temporal window when
predicting future states of chaotic systems [78, 79]. Training artificial dynamic agents
to synchronize and coordinate their musical performance with humans promises to
reveal new horizons for social AI. Importantly, this implies that we need to focus our
efforts not only on developing neural architectures but also on developing interactive
paradigms for the behavioral training of AI.

Designing AI for interaction calls for special training principles. In the early days
of connectionism, Geoffrey Hinton commented that multi-layer (deep) neural networks
and unsupervised learning hold the potential to extract high-level patterns inherent
in the stimulus space [80], the approach assumed in the present work. Yet, training
an artificial neural network to recognize a set of musical stimuli does not guarantee
that it will be able to pick on invariants of coordination when playing with another
musician, no matter how large the set is. The former is a classification task in an
object-based ontology defined in the abstract space of musical excerpts. The latter is
a real-time coordination task in a dynamic systems ontology defined over the joint
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space of multiple participants’ movements. This is more amenable to reinforcement
learning with deep networks [81], direct learning of affordances for coordination [82],
or evolutionary algorithms [83].

5 Conclusion

Variations of the famous Turing test can emphasize interactive and collaborative rather
than generative capabilities of AI. This approach has better ecological validity given
the inherent social nature of musical performance. For an artificial musical machine
to emulate musicians so skillfully as to produce similar shared experiences, it would
have to be designed and trained with interaction in mind. It remains to be seen if this
is possible.
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[66] Matarić, M.J.: Designing Emergent Behaviors: From Local Interactions to Col-
lective Intelligence. In: Meyer, J.-A., Roitblat, H.L., Wilson, S.W. (eds.) From
Animals to Animats 2: Proceedings of the Second International Conference
on Simulation of Adaptive Behavior, p. 0. The MIT Press, ??? (1993). https:
//doi.org/10.7551/mitpress/3116.003.0059 . https://doi.org/10.7551/mitpress/
3116.003.0059 Accessed 2023-03-27

[67] Bennett, D., Dix, A., Eslambolchilar, P., Feng, F., Froese, T., Kostakos, V.,
Lerique, S., Berkel, N.: Emergent Interaction: Complexity, Dynamics, and Enac-
tion in HCI. In: Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems. CHI EA ’21, pp. 1–7. Association for Comput-
ing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411763.
3441321 . https://dl.acm.org/doi/10.1145/3411763.3441321 Accessed 2023-03-23

[68] Vicente, K.J., Rasmussen, J.: The Ecology of Human-Machine Systems II: Medi-
ating ’Direct Perception’ in Complex Work Domains. Ecological Psychology 2(3),
207–249 (1990) https://doi.org/10.1207/s15326969eco0203 2 . Publisher: Rout-
ledge eprint: https://doi.org/10.1207/s15326969eco0203 2. Accessed 2023-03-28

[69] Hannon, E.E., Trainor, L.J.: Music acquisition: effects of enculturation and formal
training on development. Trends in Cognitive Sciences 11(11), 466–472 (2007)
https://doi.org/10.1016/j.tics.2007.08.008 . Accessed 2023-02-11

[70] Trainor, L.J., Cirelli, L.: Rhythm and interpersonal synchrony in early social
development. Annals of the New York Academy of Sciences 1337(1), 45–52 (2015)

20

https://doi.org/10.1109/ISTAS.2013.6613095
https://apps.dtic.mil/sti/citations/ADA349800
https://doi.org/10.1016/j.artint.2008.12.001
https://doi.org/10.1126/science.1145803
https://doi.org/10.1126/science.1145803
https://doi.org/10.7551/mitpress/3116.003.0059
https://doi.org/10.7551/mitpress/3116.003.0059
https://doi.org/10.7551/mitpress/3116.003.0059
https://doi.org/10.7551/mitpress/3116.003.0059
https://doi.org/10.1145/3411763.3441321
https://doi.org/10.1145/3411763.3441321
https://dl.acm.org/doi/10.1145/3411763.3441321
https://doi.org/10.1207/s15326969eco0203_2
https://doi.org/10.1016/j.tics.2007.08.008


https://doi.org/10.1111/nyas.12649 . Publisher: Wiley/Blackwell (10.1111)

[71] Hansen, N.C., Kragness, H.E., Vuust, P., Trainor, L., Pearce, M.T.: Predic-
tive Uncertainty Underlies Auditory Boundary Perception. Psychological Science
32(9), 1416–1425 (2021) https://doi.org/10.1177/0956797621997349 . Accessed
2023-03-26

[72] Vuust, P., Witek, M.A.G.: Rhythmic complexity and predictive coding: a novel
approach to modeling rhythm and meter perception in music. Frontiers in
Psychology 5 (2014). Accessed 2023-03-26

[73] Satne, G., Salice, A.: Shared Intentionality and the Cooperative Evolutionary
Hypothesis. In: Fiebich, A. (ed.) Minimal Cooperation and Shared Agency. Stud-
ies in the Philosophy of Sociality, pp. 71–92. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-29783-1 5 . https://doi.org/10.1007/978-3-030-29783-1 5
Accessed 2023-03-28

[74] Dotov, D., Froese, T.: Entraining chaotic dynamics: A novel movement sonifica-
tion paradigm could promote generalization. Human Movement Science 61, 27–41
(2018) https://doi.org/10.1016/j.humov.2018.06.016 . Accessed 2022-11-26

[75] Dotov, D., Cock, V., Geny, C., Ihalainen, P., Moens, B., Leman, M., Bardy, B.,
Dalla Bella, S.: The role of interaction and predictability in the spontaneous
entrainment of movement. Journal of Experimental Psychology: General 148,
1041–1057 (2019) https://doi.org/10.1037/xge0000609 . Place: US Publisher:
American Psychological Association

[76] Nakata, T., Trainor, L.J.: Perceptual and cognitive enhancement with an
adaptive timing partner: Electrophysiological responses to pitch change. Psy-
chomusicology: Music, Mind, and Brain 25(4), 404–415 (2015) https://doi.org/
10.1037/pmu0000120 . ISBN: 1-4338-2233-4 Publisher: Educational Publishing
Foundation

[77] Raffard, S., Salesse, R.N., Bortolon, C., Bardy, B.G., Henriques, J., Marin,
L., Stricker, D., Capdevielle, D.: Using mimicry of body movements by a vir-
tual agent to increase synchronization behavior and rapport in individuals with
schizophrenia. Scientific Reports 8(1), 17356 (2018) https://doi.org/10.1038/
s41598-018-35813-6 . Publisher: Nature Publishing Group

[78] Lu, Z., Hunt, B.R., Ott, E.: Attractor reconstruction by machine learning. Chaos:
An Interdisciplinary Journal of Nonlinear Science 28(6), 061104 (2018) https:
//doi.org/10.1063/1.5039508 . Publisher: American Institute of Physics. Accessed
2023-03-28

[79] Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-Free Prediction of Large
Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach.
Physical Review Letters 120(2) (2018) https://doi.org/10.1103/PhysRevLett.

21

https://doi.org/10.1111/nyas.12649
https://doi.org/10.1177/0956797621997349
https://doi.org/10.1007/978-3-030-29783-1_5
https://doi.org/10.1007/978-3-030-29783-1_5
https://doi.org/10.1007/978-3-030-29783-1_5
https://doi.org/10.1016/j.humov.2018.06.016
https://doi.org/10.1037/xge0000609
https://doi.org/10.1037/pmu0000120
https://doi.org/10.1037/pmu0000120
https://doi.org/10.1038/s41598-018-35813-6
https://doi.org/10.1038/s41598-018-35813-6
https://doi.org/10.1063/1.5039508
https://doi.org/10.1063/1.5039508
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102


120.024102 . Publisher: American Physical Society

[80] Hinton, G.E.: Inferring the meaning of direct perception. Behavioral and Brain
Sciences 3(3), 387–388 (1980) https://doi.org/10.1017/S0140525X00005549 .
Publisher: Cambridge University Press. Accessed 2023-03-28

[81] Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collec-
tion. The International Journal of Robotics Research 37(4-5), 421–436 (2018)
https://doi.org/10.1177/0278364917710318 . Accessed 2023-03-28

[82] Hasson, U., Nastase, S.A., Goldstein, A.: Direct Fit to Nature: An Evolutionary
Perspective on Biological and Artificial Neural Networks. Neuron 105(3), 416–434
(2020) https://doi.org/10.1016/j.neuron.2019.12.002 . Accessed 2023-03-28

[83] Kadihasanoglu, D., Beer, R.D., Bingham, G.P.: An evolutionary robotics
model of visually-guided braking: Testing optical variables, pp. 230–236. MIT
Press, ??? (2017). https://doi.org/10.1162/isal a 040 . https://direct.mit.edu/
isal/proceedings-abstract/ecal2017/29/230/99555 Accessed 2023-03-28

22

https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1017/S0140525X00005549
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1016/j.neuron.2019.12.002
https://doi.org/10.1162/isal_a_040
https://direct.mit.edu/isal/proceedings-abstract/ecal2017/29/230/99555
https://direct.mit.edu/isal/proceedings-abstract/ecal2017/29/230/99555

	Introduction
	Methods
	Participants
	Task
	Artificial Partner
	Apparatus
	Design
	Measures
	Procedure
	Analysis

	Results
	Discussion
	Interactive AI

	Conclusion
	Acknowledgments


