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Abstract

When exposed to rhythmic patterns with temporal regularity, adults exhibit an inher-

ent ability to extract and anticipate an underlying sequence of regularly spaced beats,

which is internally constructed, as beats are experienced even when no events occur

at beat positions (e.g., in the case of rests). Perception of rhythm and synchroniza-

tion to periodicity is indispensable for development of cognitive functions, social

interaction, and adaptive behavior. We evaluated neural oscillatory activity in prema-

ture newborns (n = 19, mean age, 32 ± 2.59 weeks gestational age) during exposure

to an auditory rhythmic sequence, aiming to identify early traces of periodicity encod-

ing and rhythm processing through entrainment of neural oscillations at this stage

of neurodevelopment. The rhythmic sequence elicited a systematic modulation of

alpha power, synchronized to expected beat locations coinciding with both tones

and rests, and independent of whether the beat was preceded by tone or rest. In

addition, the periodic alpha-band fluctuations reached maximal power slightly before

the corresponding beat onset times. Together, our results show neural encoding of

periodicity in the premature brain involving neural oscillations in the alpha range that

are much faster than the beat tempo, through alignment of alpha power to the beat

tempo, consistent with observations in adults on predictive processing of temporal

regularities in auditory rhythms.
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Research Highlights

∙ In response to the presented rhythmic pattern, systematic modulations of alpha

power showed that the premature brain extracted the temporal regularity of the

underlying beat.
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∙ In contrast to evoked potentials, which are greatly reduced when there is no sounds

event, the modulation of alpha power occurred for beats coinciding with both tones

and rests in a predictive way.

∙ The findingsprovide the first evidence for theneural codingof periodicity in auditory

rhythm perception before the age of term.

1 INTRODUCTION

Neural encoding of auditory rhythms is present from early stages of

neurodevelopment (Cirelli et al., 2016; Edalati et al., 2023; Flaten et al.,

2022; Lenc et al., 2022; Winkler et al., 2009). In adults, evidence sug-

gests that while listening to temporally structured auditory inputs,

the observed neural oscillations do not merely reflect the evoked

responses following sound events (Doelling et al., 2019; Herbst &

Obleser, 2019), anddonot simplymimic the temporal characteristics of

the sound sequences (Nozaradan et al., 2012a, 2012b). Rather, neural

oscillations appear to reflect internal processing and temporal expecta-

tions based on both the temporal organization of sound sequences and

prior knowledge andexperience (Doelling et al., 2023;Nozaradanet al.,

2011; Tal et al., 2017; Zalta et al., 2024). Some of these neural capaci-

ties appear to be present even during early development (Edalati et al.,

2023; Flaten et al., 2022; Lenc et al., 2022).

Rhythmicity in different sensory domains can lead to temporal pre-

dictions ofwhen future events are expected,which in turn can facilitate

preparation and coordination at both neural and behavioral levels

(Arnal & Giraud, 2012; Arnal et al., 2015; Chang et al., 2019; Henry &

Herrmann, 2014; Large & Jones, 1999; Lumaca et al., 2019; Schroeder

& Lakatos, 2009). This in turn, is highly advantageous as it enables

adaptive and proactive behaviors.When adults listen to a typical musi-

cal rhythm with temporal regularity, they can spontaneously extract,

feel and tap to its beat, an (typically) isochronous series of pulse onsets

(Merchant et al., 2015). That the perceived beat (i.e., pulse onsets) is

derived in the brain is evident in that beats can be perceived even dur-

ing rests (or silences) in the repeating rhythmic pattern, andwhen there

is little energy at the beat frequency in the stimulus (Tal et al., 2017).

At themacroscopic level, ongoing neural activity is predictively aligned

to anticipated events of the rhythmic sequence (Doelling & Poeppel,

2015; Snyder & Large, 2005). One of the cortical manifestations of

this phenomenon in adults is periodic fluctuations in the power of beta

band activity (15–30 Hz), orchestrated by the rhythmic structure of

the auditory sequence (Chang et al., 2019; Fujioka et al., 2012) in a

predictive manner, as these fluctuations reach maximum power at the

expected timeof the next events across different tempos (Fujioka et al.,

2015).

Auditory rhythms typically have a hierarchical (metrical) structure

in that perceived beats at one level are grouped (typically into groups

of 2 or 3) at higher metrical levels, creating beat tempos at half or one-

third, respectively, of that level. Analyzing electroencephalography

(EEG) responses using a low-frequency tagging approach (Nozaradan

et al., 2012) to repeating rhythmic patterns, we have recently demon-

stratedneural responses tobeat andbeat grouping (meter) frequencies

in premature newborns at 30–34 weeks gestational age (wGA), in par-

ticular, showing that slow neural oscillations in the range of 1–3 Hz

phase align to the envelope of the rhythmic sequences (Edalati et al.,

2023). However, it is difficult to determine from such analyseswhether

the responses reflect periodicity encoding and neural representation

of the temporal regularity or whether they are simply event-related

responses to events on the previous beat. Following previous stud-

ies in adults suggesting that higher frequency neural responses reflect

predictive beat tracking (Arnal et al., 2015; Doelling & Poeppel, 2015;

Fujioka et al., 2015), in the present paper we revisited this previously

published dataset and analyzed power fluctuations in higher frequency

neural oscillatory activities in response to the six-beat stimulus of

Edalati et al. (2023). This enabled us to examine evidence consistent

with hypotheses related to the presence of periodicity encoding and

neural temporal prediction at this early developmental stage. We are

agnostic as to whether the mechanism of prediction involves some

kind of neural resonance or explicit coding of temporal expectations.

Particularly, as we do not have behavioral evidence of anticipation in

premature infants, here we use the term “neural prediction” to refer

specifically to the alignment of neural oscillations to beats, regardless

of whether they coincide with a stimulus event onset or an internally

generated beat onset where there is no stimulus (as in silent “rests”).

During the third trimester of gestation, the brain undergoes rapid

structural and functional development (Kostović et al., 2019; Kostović

et al., 2021). This period also marks the initiation of the cortical pro-

cessing of exogenous stimulation, through the first thalamic afferents

reaching the cortex around 28wGA (Kostović & Judaš, 2010). Interest-

ingly, premature newborns already respond to various auditory stimuli

and demonstrate neural coding of certain (Edalati et al., 2022; Mah-

moudzadeh et al., 2013; Panzani et al., 2023). The neurodevelopmental

journey during this period, including factors such as preterm birth, sig-

nificantly influences the subsequent capacities observed in full-term

newborns and infants (Alex et al., 2024;Kostilainenet al., 2020;Routier

et al., 2023). Due to the importance of time and rhythm processing

from the developmental point of view (Ladányi et al., 2020; Lense et al.,

2021;Nguyenet al., 2023; Trainor et al., 2018), it is important to further

investigate the early neural capacities for encoding temporal regu-

larities and the underlying mechanisms during this critical phase of

neurodevelopment.

We first hypothesized that exposure to a repetitive rhythmic stimu-

lus would result in the encoding of periodicity, thereby eliciting power
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modulations in higher frequency neural oscillations at the beat fre-

quency. These modulations would be temporally synchronized with

the stimulus beats, implying neural anticipation of the beat, mirroring

observations in adults. As the stimulus envelope contains little energy

at higher frequencies, this evidence would indicate that beat timing

is encoded in cortical oscillatory activity. To examine this hypothesis,

we quantified the synchronization between the power fluctuation of

alpha-band oscillationsmeasured in EEGand the beat (i.e., isochronous

pulse train derived from the rhythmic stimulus) by computing the

strength of phase-amplitude coupling (PAC) between the phase of a

sinusoid representing the beat and neural alpha-band power. Second,

we hypothesized that thesemodulations should be equivalentwhether

or not the beat onset times coincided with a sound event (tone) or a

rest. This is important because neural event-related responses (that

follow) sounds are greatly attenuated or absent when no sound stim-

ulus is present. If alpha power modulations align to rests, and to tones

following rests, this would strongly suggest neural prediction of beat

onset times. To examine this hypothesis, we analyzed evidence for the

equivalence of alpha power modulations around rests, tones following

rests, and tones following tones. Third, one line of evidence for predic-

tion in adults is that they tend to anticipate the beat (Repp & Su, 2013;

Roman et al., 2019), so we hypothesized that our premature infants

would showmaximumpower at a phase that slightly preceded the beat

(for both tone and rest onset times).

2 MATERIALS AND METHODS

2.1 Participants

Nineteen healthy premature neonates (five males) with mean gesta-

tional age at birth of 32 ± 2.59 wGA, who participated in our recent

study (Edalati et al., 2023), were reconsidered in this study. EEG was

recorded (mean recording age: 33.57 ± 2.21 wGA) in an incubator

at the neonatal intensive care unit of the Amiens University Hospital

(Amiens, France) during sleep. In brief, all neonates had appropriate

birth weight, size, and head circumference for their gestational age

and normal auditory and clinical neurological assessments. None were

considered to be at risk of brain damage. One or both parents were

informedabout the study andprovided theirwritten informed consent.

The local ethics committee (CPPOuest I) approved the study (ID-RCB:

2019-A01534-53).

2.2 Auditory stimuli and the experimental
paradigm

To create the rhythmic patterns, rock drum sounds composed of snare

and bass were used. The stimuli were created using the open-source

software Audacity 2.2.2 program and exported as WAV files. The

original stimulus used in our previous study consisted of two rhyth-

mic patterns (Edalati et al., 2023). In the present analysis, we only

reconsidered the Duple/Triple Rhythm, which consisted of a six-beat

rhythmic pattern based on Cirelli et al. (2016) and Phillips-Silver and

Trainor (2005). Briefly, onset-to-onset intervals between successive

tones were either 330 or 660 ms, such that successive tone or silence

onset-to-onsets were 330 ms, which translated to a beat frequency of

3 Hz. The pattern duration was 1980 ms (Figure 1a, Top). This pattern

was repeated 19 times for 38-s long trials. The 38-s long trials were

repeated 50 times across two separate blocks. Based on previous

evidence, this rhythm induces the perception of a meter, based on

grouping by two (i.e., 2 × 333 ms = 666 ms, hence a duple meter

frequency of 1.5 Hz) or three beats (i.e., 3 × 333 ms = 999 ms, hence

a triple meter frequency of 1 Hz) (Cirelli et al., 2016; Phillips-Silver &

Trainor, 2005). Note that there were not sound events on every “beat.”

Each experimental session started with 20 min of silence, during

which the spontaneous neural activity of the neonate was recorded

as a baseline condition. The stimuli were delivered through a speaker

at 65 dB SPL, which was located at the feet of the neonates, using

Psychtoolbox for MATLAB (Kleiner et al., 2007). The total duration of

the experiment was 63min. The recordings were stopped if the infants

woke up, started to cry, or moved.

2.3 EEG acquisition and preprocessing

EEG signals were collected using a 124-channel HydroCel GSN net

with an Electrical Geodesic NetAmps 200 amplifier. The EEG was

recorded at a 1000-Hz sampling rate, referenced to the electrode

Cz. The recorded signals were analyzed in MATLAB using FieldTrip

(Oostenveld et al., 2011), EEGLAB (Delorme & Makeig, 2004), and

custom MATLAB functions and codes. A two-pass 0.5- to 45-Hz finite

impulse response (FIR) filter (order = 3 cycles of the low-frequency

cut-off) and a 50-Hz notch filter were applied to remove low- and high-

frequency artifacts, and also the line noise from the EEG signals. Next,

the data were down-sampled to 512-Hz. The electrodes belonging

to the outer ring were removed from further analysis. The first and

last 5 s of recording was also removed. The EEG signals were then

visually inspected and bad electrodes were removed from the data.

Next, in each trial, every electrode was examined and excluded from

further analysis if the average absolute value exceeded 30 μV. If the

number of excluded electrodes in a trial exceeded 50% of the total

number of electrodes, the entire trial was discarded. Two participants

were removed after this process due to the small number of remaining

trials. The average number of remaining trials after preprocessing was

44.53± 5.65.We corrected the remaining local and transient artifacts,

using the Artifact Blocking algorithm (Fujioka et al., 2011), and a

threshold of 100 μV. Subsequently, the EEG data were re-referenced

to the average reference.

2.4 Time-frequency representation (TFR)

Neural response at the beat and meter frequencies were quantified in

our previous study (Edalati et al., 2023) using the frequency-tagging

approach (Figure 1a, Bottom). Here, to investigate oscillatory activities
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F IGURE 1 Phase-amplitude coupling analysis. (a) Frequency spectrum of the EEG (bottom) while listening to Duple/Triple Rhythm (top). (b)
The top figure presents the powermodulation in the course of the six-beat sequence in the frequency range of 2–30Hz. The bottom figure
presents the power fluctuations averaged in the frequency range 7–12Hz (baseline corrected) after 3 Hz narrow band filtering for better
visualization. (c) The topographical distribution of the strength of PAC (left), and the preferred phase of coupling (right; green represents alpha
power phase leading stimulus phase) of the power of oscillations in the frequency range 7–12Hz to the beat (modeled by a simulated 3Hz
sinusoidal) averaged over subjects. The dots represent the cluster where the PACwas significant in comparison with surrogate data.

related to the beat, we calculated the TFR over each 38-s long trial

using the Morlet wavelet from the Fieldtrip toolbox. Wavelet cycles

were set at three cycles on frequencies ranging from 2 to 30 Hz in

steps of 0.5 Hz across all electrodes. We eliminated 2 s (equivalent to

one repetition of the rhythmic pattern) from both ends of the trial to

avoid aliasing caused by time-frequency analysis.

To establish an appropriate baseline, we randomly selected 10

windows of the same length as those of the trials (38 s) from the pres-

timulus silence period. After calculating the TFR for each window, we

averaged the results across the windows and time samples inside each

window and then over windows, resulting in a baseline value for each

frequency step of the TFR. Time-locked TFRs of all trials were then

normalized to the obtained baseline. For visualization in Figure 1, TFRs

were averaged over all the repetitions of the six-beat rhythmic pattern

per participant, resulting in a time-frequencymap of 2 s.

After visual inspection of the normalized TFR (Figure 1b) and

observation of alpha-band power fluctuations, we further analyze the

temporal characteristics of the alpha-band power modulation for the

beat (higher frequencybandswere also analyzed in theproceeding sec-

tion). Toward this, we computed the time courses of alpha-band power

by calculating the mean across the frequency steps from 7 to 12 Hz.

To describe the latency of alpha-band modulation, we averaged the

obtained signals across the expected auditory events (tones and rests).

In the resulting alpha-band waveforms, the 95% confidence interval of

the grand average as a representation of subject variability was esti-

mated with bootstrap resampling (N = 1000) (Fujioka et al., 2015).

The latency of the peak and the subsequent decrement and the peak

amplitude of the alpha-band waveform within the −166.5 to 166.5 ms

window around the beat event were then calculated.

2.5 Phase-amplitude coupling between the beat
phase and amplitude of neural alpha oscillations

To investigate whether the fluctuations in the power of alpha oscil-

lations (7–12 Hz, selected based on the observed TFR) were locked

to the beat, we analyzed the PAC between the beat and the power of

alpha-band oscillations (Canolty & Knight, 2010). To investigate the

specificity of the PAC between the beat and power fluctuations in the

alpha-band, we conducted the same analyses on PACbetween the beat

and power fluctuations in frequency bands of 15–20Hz and 20–30Hz.

We approximated the beat dynamics with a sinusoid oscillating at

3 Hz, in which each cycle corresponded to the duration between two

successive beat events (tone or rest), with the beat event correspond-

ing to phase φ = 0. For EEG data processing, we calculated the TFR

per trial (Morlet wavelet (cycles = 3) from the Fieldtrip toolbox) for

frequencies 7–12 Hz in steps of 0.5 Hz. Subsequently, the time course

of the alpha-band oscillation was computed by averaging across the
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alpha-band frequencies. To ensure proper phase estimation, the EEG

time series were filtered beforehand in the range of the modulated

frequency of interest (two pass FIR bandpass filter; order = 3 cycles

of the low-frequency cut-off). To calculate the phase information of

both the alpha-band power signal and the 3 Hz signal representing the

beat, we applied the Hilbert Transform. Toward this, the alpha power

signal was first narrow band filtered around 3 Hz (2–4 Hz, order = 2)

to avoid the impact of the rapid fluctuation on the temporal evolution

of the phase signal. We then eliminated two seconds from both ends

of each trial. The synchronization index (SI) (Cohen, 2008) between

the two-phase time series was then calculated for each time sample

and then averaged over time samples and trials, at each electrode

location. The SI is a complex number, the radius of which indicates

the strength of locking between the sinusoidal beat signal and alpha

power fluctuations, and the angle of which represents the “preferred

phase” of synchronization (Gonzalez et al., 2018; Moghimi et al., 2020;

Staresina et al., 2015), that is, the phase at which the alpha power is

greatest over time. The SI is calculated as

SI = 1
NT

N∑

i=1

T∑

t=1
ej[𝜑sin(t)−𝜑alpha,j(t)]

whereN is the number of trials, T is the number of samples in one trial,

φalpha,i(t) is the phase value of the fluctuations in the alpha-band power
time series at trial i and sample t, andφsin (t) is the phase value of the

sinusoidal 3 Hz beat signal at sample t.

2.6 Lissajous curve

As a complementary method to visually examine the synchroniza-

tion between the phase of the beat and the power of alpha-band

oscillations, we utilized the Lissajous curve (Lense et al., 2022). The

Lissajous curve effectively captures how two time-varying signals vary

with respect to one another, allowing us to visualize synchronization

between two continuous signals and determine the phase shift from

one signal to another. In this analysis, the phase of the beat was esti-

mated as a continuously varying 3 Hz cosine function (Figure 2, Top) at

a −166.5 to 166.5 ms window (i.e.,−180 to 180◦) centered around the
tone/rest position. The power of alpha-band oscillations was defined

as the mean power in the 7–12 Hz frequency range in the TFR, aver-

aged over 333mswindows centered around the tone/rest positions. To

ensure comparability across subjects, the calculated alpha-band oscil-

lation power was normalized between −1 and 1. With the measure

of the alpha-band oscillation power together with the cosine function

specifying the phase of beat, we obtained two continuous time-varying

signals that could be directly compared using the Lissajous curve.

2.7 Statistical analysis

Statistical analyses were performed in MATLAB (MathWorks), using

the FieldTrip (Oostenveld et al., 2011) and CircStat (Berens, 2009)

toolboxes as well as custom MATLAB functions. Different statistical

F IGURE 2 Comparison between the alpha-band power
modulations around three specific beat conditions: (1) rests, (2) tones
preceded by a rest, and (3) tones preceded by a tone. (a) There were no
significant differences in the peak value of the alpha-band power
among the three conditions as shown in a one-way ANOVAwith factor
condition (F(2,14)= 0.32, p= 0.7276, Bayes factor= 0.134). (b) There
was no significant difference in the peak latency of the alpha-band
power among the three conditions as shown by a one-way ANOVA
with factor ANOVA (F(2,14)= 0.09, p= 0.9123, Bayes factor= 0.111).

analyseswere conducted to address the three hypotheses raised in the

Introduction.

Hypothesis 1. To evaluate the significance of beat to alpha power PAC

across participants,wegenerated surrogatedataby randomly shuffling

the sinusoidal 3Hzbeat signal 1000 times. Subsequently,we calculated

the PAC strength between the shuffled 3 Hz signal and the alpha-band

power trials for each repetition, generating 1000 surrogate SI values

from which we could infer the SI chance distribution. By comparing

the observed PAC strengthswith those corresponding to the surrogate

datasets, we obtained electrodes over which the PACwas significantly

above the chance level (p < 0.05). Next, we detected spatial clusters

with a significant PAC. The initial threshold for cluster definition and

the minimum number of neighbors were set to p < 0.05 and three,

respectively.

The consistency of phase locking values across participants was

assessed by performing the basic Rayleigh test (Berens, 2009). This

test allowed us to evaluate the nonuniformity of the circular histogram

of the phase difference across participants, which provides a measure

of consistent phase locking to the sinusoidal 3 Hz signal representing

the beat.
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Hypothesis 2. To examine if alpha power modulations were equiva-

lent whether or not the beat onset times coincided with a sound event

(tone) or a rest, we compared the latencies and amplitudes of the alpha

power peaks across beats coinciding with (1) rests, (2) tones that were

preceded by a rest, and (3) tones that were preceded by a tone. We

then used one-way ANOVA to compare the peak/latency values for

the three conditions, with a particular interest in evidence in favour

of the null hypothesis (evaluated with Bayesian statistics, using Akaike

Information Criterion).

Hypothesis 3. To examine whether the peak latency of the alpha-band

waveformwasbefore thebeat and if the followingdecrementwas after

the beat, a one-tailed one-sample t-test was performed. Normality was

tested using the Lilliefors test (Lilliefors, 1969). The corresponding

effect size was defined using Cohen’s d.

3 RESULTS

3.1 Hypothesis 1: Is alpha-band power
fluctuation orchestrated by the beat?

The normalized TFR over frontal and fronto-central electrodes

revealed periodic fluctuations in the neural activity in the alpha fre-

quency range (712 Hz) aligned with the beat (both tone and rest)

(Figure 1b). Visual inspection of the TFR did not reveal similar power

fluctuations at higher frequencies. To address the synchronization

between the power fluctuation of alpha-band oscillations and the beat,

we evaluated the strength of PAC between the phase of the simulated

sinusoidal 3 Hz signal representing the beat (including tones and rests)

and the amplitude of the alpha-band power. The topographical dis-

tribution of the strength and phase of PAC is shown in Figure 1c. In

agreement with the TFR depicted over the rhythmic sequence, there

was a significant PAC across participants over a number of frontal

electrodes compared to surrogate data (p = 0.0203; Figure 1c, Left),

with a consistent phase delay between the beat and alpha-band power

modulations and over time and trials. To evaluate the specificity of

the PAC to the beat uniquely to the alpha-band power, we conducted

the same analysis by setting the modulated frequency to 15–20 Hz

and 20–30 Hz. Consistent with the TFR results showing no periodic

fluctuation of power at these frequency bands, no significant PAC clus-

ter emerged while contrasted to surrogate data (Figure S1), indicating

that the periodic fluctuation of power by the beat was limited to the

alpha-band.

3.2 Hypothesis 2: Is alpha-band power fluctuation
equivalent for beats aligned with tones and rests?

There was no significant difference between the alpha power peak for

beats aligned with (1) rests, (2) tones that were preceded by a rest,

and (3) tones that were preceded by a tone (Figure 2a), as revealed by

a one-way ANOVA (F(1,14) = 0.32, p = 0.7276, Bayes factor = 0.134).

Post hoc t-tests revealed strong evidence favoring the null hypothesis

(t(16) = 0.578, p = 0.571, Bayes factor = 0.289 comparing conditions

1 and 2; t(16) = 0.708, p = 0.489, Bayes factor = 0.311 comparing

conditions 1 and 3; t(16) = 0.1552, p = 0.879, Bayes factor = 0.252

comparing conditions 2 and 3). In addition, there was no significant

difference between the peak latency for beats aligned with the three

aforementioned conditions (Figure 2b), as revealed by a one-way

ANOVA (F(2,14) = 0.09, p = 0.9123, Bayes factor = 0.111). Again,

post hoc t-tests revealed strong evidence favoring the null hypothesis

(t(16) = 0.421, p = 0.679, Bayes factor = 0.269 comparing conditions

1 and 2; t(16) = 0.004, p = 0.996, Bayes factor = 0.249 comparing

conditions 1 and 3; t(16) = 0.376, p = 0.712, Bayes factor = 0.265

comparing conditions 2 and 3).

If the alpha oscillations were reactive (rather than predictive) and

related to the neural response to tones, we should have observed a

significant reduction for rests compared to tones, and also a reduc-

tion for tones preceded by a rest compared to tones preceded by a

tone.

3.3 Hypothesis 3: Does alpha-band power peak
precede the beat?

The signal corresponding to alpha-band power fluctuations showed

a phase lead with respect to the beat as shown in Figure 3a,b. The

phase lead was consistent over the electrodes belonging to the frontal

cluster identified above, as revealed with a phase difference between

0◦ and 90◦ within the significant cluster (mean phase difference over

the cluster = 76.58◦; Figure 3a). In addition, the Rayleigh test revealed

consistent phase relationships among participants (R = 4.3605,

p = 0.0108) over these frontal electrodes. The temporal distribution

of the phase differences relative to the onset of the beat event for

each participant is presented in Figure 3b. A complementary analysis

conducted with the Lissajous curve (Figure 3c) also showed phase cou-

pling between the beat sinusoid and the alpha-band oscillations power.

The leading phase of the alpha-band oscillations power with respect to

that of the beat is illustrated by the clockwise direction of the Lissajous

curve.

We further examined the temporal dynamics of the alpha-band

power fluctuations extracted from the TFR averaged over the elec-

trodes belonging to the significant cluster at three specific time

periods, similar to those studied for Hypothesis 2 (Figure 4); (1)

around rests, (2) around tones that were preceded by a rest, and (3)

around tones that were preceded by a tone. The statistical analysis

revealed that for each period, the latency of the peak of the alpha-

band waveform was before the beat onset (see also Figure 2), and

the latency of its subsequent decrement was after the beat onset.

In condition 1, the peak was located at −49.84 ± 91.91 ms, indicat-

ing that the latency was significantly earlier than the beat onsets

(t(16) = −2.2357, p = 0.02, Cohen’s d = 0.52). Similarly, in conditions

2 and 3, the peak was located at −39.35 ± 77.41 ms (t(16) = −2.0959,
p = 0.0262, Cohen’s d = 0.48) earlier than the rest-beat onset, and

in condition 3 it was −34.07 ± 78.76 ms (t(16) = −1.78, p = 0.0467,
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EDALATI ET AL. 7 of 12

F IGURE 3 Phase analysis of PAC. (a) Individual phase of PAC (power of alpha oscillations to the beat) averaged over all events. (b) Individual
phase of PAC over one beat cycle (same data as a, but presented over one cycle for temporal visualization). Both (a) and (b) are presented over the
significant frontal electrodes belonging to the cluster shown in Figure 1c, which have consistent phase relationships among participants, verified
by the Rayleigh test (R= 4.3605, p= 0.0108). Each gray dot in (a) and (b) corresponds to one participant. The black dot represents the average
phase among participants. (c) The Lissajous curve for the alpha-band oscillation power versus beat phase averaged across participants is shown by
the black line. The gray areas show the standard error across participants. Arrowhead shows the direction of travel, illustrating a phase lead for the
alpha-band power fluctuations.

F IGURE 4 Latency of beat-relatedmodulation of alpha power. Average of power in the frequency band 7–12Hz around all events (a), rest
events (b), and tone events preceded by rest (c). The shaded area represents the 95% confidence interval of themean over participants. The
boxplots show the distribution of the peak and trough positions around each aforementioned event. The peak position is in the range of−49.84±
91.91ms (t(16) =−2.2357, p= 0.02, Cohen’s d= 0.52) for rest events (a),−39.35± 77.41ms (t(16) =−2.0959, p= 0.0262, Cohen’s d= 0.48) for tone
events preceded by a rest (b), and−34.07± 78.76ms (t(16) =−1.78, p= 0.0467, Cohen’s d= 0.41) for tone events preceded by a tone (c). The
trough position is in the range of 49.95ms± 99.59ms (t(16) = 2.0681, p= 0.0276, Cohen’s d= 0.48 for rest events (a), 77.95ms± 87.33ms
(t(16) = 3.6803, p= 0.001, Cohen’s d= 0.85) for tone events preceded by a rest (b), and 76.68ms± 87.76ms (t(16) = 3.5944, p= 0.001, Cohen’s
d= 0.83) for tone events preceded by a tone (c).

Cohen’s d = 0.41) earlier than the tone-following-a-rest beat onset.

Furthermore, the subsequent decrement was consistently located

after the beat event for all the three conditions (49.95 ms ± 99.59 for

condition 1, 77.95 ms ± 87.33 for condition 2, and 76.68 ms ± 87.76

for condition 3) and the latencies were all significantly positive in

comparison with the beat timing (t(16) = 2.0681, p = 0.0276, Cohen’s

d = 0.48 for condition 1, t(16) = 3.6803, p = 0.001, Cohen’s d = 0.85

for condition 2, and t(16) = 3.5944, p = 0.001, Cohen’s d = 0.83 for

condition 3).

4 DISCUSSION

Previous studies have provided neural evidence that infants track the

beat of rhythmic patterns (Cirelli et al., 2016; Flaten et al., 2022; Lenc

et al., 2022; Winkler et al., 2009) and our previous study showed that

already in premature newborns, slow neural oscillations phase align

with beat frequencies (Edalati et al., 2023). However, studies in adults

demonstrate that in addition to phase alignment between slow neu-

ral oscillations and beat frequencies, periodic fluctuations in power
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at higher frequencies (specifically, beta power, 15–30 Hz) phase align

to the perceived beat of rhythmic stimuli (Fujioka et al., 2009, 2012)

and are modulated by perception (Iversen et al., 2009), suggesting

that this beat-phase/beta-power coupling relates to intrinsic predictive

processes (Large et al., 2023). The present study extends our under-

standing of early rhythmic capacities by showing that similar PAC is

already present in premature newborns more than a month before full

term. Further, the present study shows that this coupling occurs at a

somewhat lower neural frequency in the premature infant brain (alpha

power, 7–12Hz) than in adults. Importantly, this PAC indicates that the

premature brain encodes an isochronous beat when presented with a

nonisochronous rhythm towhich adults perceive a strong beat.

Two features of the alpha-band power modulation response are

consistent with the premature brain engaging in prediction of under-

lying beat onsets. First, the modulation of alpha power occurred in

response to beats coinciding with both tones and rests and, for beats

coinciding with tones, the peak amplitude of the modulation was inde-

pendent of whether the event was preceded by a tone or rest. That

this systematic modulation of alpha power occurred around both tone

and rest events makes it unlikely that these modulations were sim-

ply elicited as responses to individual sound events. Indeed, this is in

contrast to evoked potentials, which are greatly reduced, if not absent

altogether, when there is no sound event. This suggests that it is the

timing of the beat, rather than the acoustic energy coinciding with

tones, that orchestrated the power modulation. Second, the periodic

alpha-band fluctuations demonstrated a phase leadwith respect to the

periodic signal presenting the beat (i.e., the neural alpha power peak

preceded the beat onset and its trough followed the beat onset), sug-

gesting that the response was predictive of beat onsets rather than

reactive to them. This is consistent with adult data showing that dur-

ing motor synchronization to an auditory rhythm, adults tend to tap

before the beat (Roman et al., 2019), but this finding has to be treated

with caution. As the stimuli consisted of repeated tones and rests, the

small phase lead might also be considered as a large phase lag with

respect to the preceding event. However, the lack of a significant dif-

ferencebetween the alphapower characteristics corresponding to rest

and toneevents suggests that even if thephasewas representeda large

phase lag, it still represents neural coding of the timing of the beats.

Evaluating and comparing phase relationships at different tempi,which

modulate the interevent intervals, might help to clarify this question.

In any case, the current results provide the first evidence for the pos-

sible existence of similar temporal predictive mechanisms before the

age of term, although further studies are required confirm this initial

hypothesis.

Studies conducted in adults have proposed different hypotheses

for the role of beta oscillations in encoding temporal predictions. One

hypothesis is that beta oscillations during rhythm processing originate

from interactions and coupling between the auditory and motor

cortices (Zalta et al., 2023, 2024). Another hypothesis is that beta

oscillations are related to top-down predictions driven by temporal

regularities. Evidence suggests that these predictions can modulate

the strength and timing of beta oscillation during rhythm processing

(Fontolan et al., 2014; Morillon & Baillet, 2017; Spitzer & Haegens,

2017). In the present paper, we observed similar stimulus aligned

modulation in the premature infant brain, but at a lower frequency

around 7–12 Hz. We propose that these observed alpha oscillations

in premature newborns may indicate neural predictions of the timing

of the beat. However, we do not have evidence about the cortical

sources of the oscillations, so this remains to be investigated in future

research.

We can only speculate as to why the alpha-band appears to support

phase/amplitude coupling for beat processing in the premature brain,

whereas the beta band serves this role in adults. Generally, in the

mature adult brain low frequency and high-frequency oscillations

are thought to support different aspects of information flow and

encoding. In early development of neural hierarchies for information

processing, various factors likely contribute to the involvement of

different frequencies than in adults. It is well known that the frequency

of spontaneous neural oscillations undergoes an evolution during

early neurodevelopment, reflecting the maturation and refinement of

neural communication and information processing. The development

of inhibitory mechanisms and the developmental increase in the

strength of inhibition play a crucial role in shaping neural circuits and

refining neural activity (Chini & Hanganu-Opatz, 2021; Chini et al.,

2022). As inhibitory interneurons and GABAergic currents mature,

they contribute to the establishment of balanced neural networks

and the regulation of excitation-inhibition dynamics, contributing to

a transition in brain dynamics from early highly synchronous activity

patterns to decorrelated neural activity later in life. In neural mass

models, the frequency of oscillation in a network depends on the

strength of inhibitory-excitatory and inhibitory-inhibitory connections

(Ghorbani et al., 2012; Hashemi et al., 2019). However, hypotheses

about the direct role of premature inhibition on the frequency of

rhythmic power fluctuations are highly speculative as many other

developmental factors can also impact neural strategies for temporal

processing. For instance, considering structural neurodevelopment,

the microstructures of the cortical columns undergo rapid evolution

before the age of term in an inside-out manner (Rakic, 1988). Differ-

ences in neural responses to stimuli from early stages to later mature

states can also be related to the remodeling of initial circuitry and

development of more mature neural structures. In the same vein, the

functional role of such alpha oscillations in the premature brain can

be different from those observed in the mature brain during temporal

processing (Cabral-Calderin & Henry, 2022; Grabot et al., 2019;

Milton & Pleydell-Pearce, 2016; Spaak et al., 2014; Van Wassenhove,

2016). In addition, sustained alpha oscillations are absent in prema-

ture EEG, which is characterized by bursts of oscillatory activities

of different frequencies (the spectral content goes through a rapid

evolution with age) separated by quiescent periods (Wallois et al.,

2021).

Fujioka and colleagues (Fujioka et al., 2009, 2012) found evidence

in adults that the slope of the beta-band power increase predicted

the expected onset time of the upcoming beat across isochronous

sequences at different tempos. Here, we were only able to test one

tempo in premature infants. However, we found that the phase of the

neural alpha power fluctuations led thephase of the stimulus beat,with
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the peak of maximum power located slightly before and the trough

after the beat. Arnal et al. (2015) also found bursts of beta band oscil-

lations preceding auditory targets in a rhythmic sequence, where the

difference in the relative phase was suggested to be related to the

cortical region of interest. The phase of beta band temporal dynam-

ics observed by Fujioka et al. (2012), also varied among different brain

regions, most notably between auditory andmotor regions, suggestive

of oscillatory communication between these regions. In the current

study, the alpha-band fluctuations observed over the fronto-central

region (where the activity was maximum), could be a superposition

of activities with different cortical origins, making interpretation of

the role of different regions in the phase relationship impossible. It

thus remains for future studies to examine whether different cortical

regions in the premature brain exhibit different phase relations, and

how they interact during rhythmic processing. In general, hypotheses

about the role of alpha oscillations in temporal predictions need to be

tested in additional study designs that allow evaluating the relation

between alpha power modulation and temporal prediction directly,

such as, for example, examining the neural response to occasional tem-

poral deviations (Arnal et al., 2015) and the persistence of oscillations

once the stimulation ceases (Kösem et al., 2018). Until such stud-

ies are conducted it is prudent not to over interpret the underlying

mechanisms of the oscillations we observed.

Time related processing is of high importance from the develop-

mental point of view (Lense et al., 2021), for the development of

language (Goswami, 2022), and musical capacities (Trainor & Hannon,

2013), as well as for communication, interpersonal coordination, and

social affiliation (Cirelli et al., 2018; Nguyen et al., 2023). Predictive

temporal processing is essential for adaptation to dynamic environ-

mental changes and efficient perception, cognitive abilities necessary

for learning, and the development of higher-order cognitive functions.

The present study suggests that neural predictive time processing in

response to a rhythmic sequence is present more than a month before

the age of term, implying that rhythmic processing is likely an impor-

tant early building block of neurodevelopment. The prenatal auditory

world is characterized by omnipresent rhythmic sounds, such as the

maternal heart beat and respiration, the fetal heart beat, and mater-

nal speech and singing. However, premature birth can result in sensory

deprivation for patterned input as these natural rhythmic inputs in

the womb are not present in an incubator. Combined with exposure

to the loud sounds of medical machines in the neonatal intensive

care unit, this may impact the early development of neural hierarchies

(Ibrahimet al., 2021). Premature birth is generally associatedwith vari-

ous pathologies that can impact neurodevelopment.While the present

study indicates that rhythmencoding through neural oscillations is evi-

dent in the premature infant brain soon after birth, the effects of the

subsequent poverty of rhythmic input between premature birth and

40 weeks gestation remains unknown, as does possible benefits of

rhythmic interventions during this period.
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