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Objective: EEG recording is useful for neurological and cognitive assessment, but acquiring reliable data
in infants and special populations has the challenges of limited recording time, high-amplitude back-
ground activity, and movement-related artifacts. This study objectively evaluated our previously pro-
posed ERP analysis techniques.
Methods: We compared three artifact removal techniques: Conventional Trial Rejection (CTR), Independent
Channel Rejection (ICR; He et al., 2007), and Artifact Blocking (AB; Mourad et al., 2007). We embedded a
synthesized auditory ERP signal into real EEG activity recorded from 4-month-old infants. We then com-
pared the ability of the three techniques to extract that signal from the noise.
Results: Examination of correlation coefficients, variance in the gain across sensors, and residual power
revealed that ICR and AB were significantly more successful than CTR at accurately extracting the signal.
Overall performance of ICR and AB was comparable, although the AB algorithm introduced less spatial
distortion than ICR.
Conclusions: ICR and AB are improvements over CTR in cases where the signal-to-noise ratio is low.
Significance: Both ICR and AB are improvements over standard techniques. AB can be applied to both con-
tinuous and epoched EEG.
� 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

The brain’s response to events such as the presentation of
sounds, speech, and music can be examined with event-related
potentials (ERPs) extracted from EEG recordings. These ERPs can
be measured in preverbal infants and other groups for whom ver-
bal responses and behavioural methods can be difficult (Trainor,
2008). Thus they are particularly useful for investigating learning
and maturation during development as well as for the objective
assessment of neurological, perceptual and cognitive status in spe-
cial populations (Steinschneider and Dunn, 2003). ERPs track the
stages of information processing over time, from sensory to per-
ceptual to cognitive, such that the points can be identified at which
differences are evident across age or between groups of subjects.
Furthermore, recently-developed high-density EEG recordings
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allow up to several hundred places on the scalp to be sampled con-
currently, which enables good estimation of the sources of activa-
tion in the brain.

In addition to neural processing of the presented stimulus
events, EEG signals contain two types of noise: background brain
activity that is largely unrelated to processing the event, and
movement artifacts due to activity such as eye blinks and head
movement. In contrast to the unrelated brain activity, the ERP sig-
nal is phase locked to the stimulus onset. Accordingly, the standard
procedure for estimating an ERP is to average over a large number
of trials. Movement artifacts are typically an order of magnitude
larger than the ERP signal, and they are typically eliminated before
averaging is done. There are several approaches for eliminating
high-amplitude artifacts from EEG data. In a common approach,
called Conventional Trial Rejection (CTR), high-amplitude artifacts
are identified in individual channels on individual trials by their
large amplitude; the data across all electrodes are then eliminated
for trials containing artifact in any channel. This approach works
successfully for most adult data because there are many trials
and few contain such artifact, leaving a sufficient number of trials
for averaging. In a second approach, EEG responses to eye blinks
and movements are measured in each subject, the sources of this
ed by Elsevier Ireland Ltd. All rights reserved.
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activity are modeled, and these sources are subtracted from the
EEG responses obtained during the study (Berg and Scherg, 1994;
Gratton et al., 1983; Lins et al., 1993b). This approach works well
for adult data because eye movement and eye blinks give rise to
consistent ERP responses and can be modeled with a small number
of sources. A third approach is based on modeling the measured
EEG data as a linear combination of a set of independent compo-
nents. This Independent Component Analysis (ICA) technique can
be utilized for separating the signal from the artifact because the
few independent components with largest amplitude contain most
of the artifacts. These independent components can then be re-
moved from the EEG data before averaging (Jung et al., 2001).

Unfortunately, these standard methods do not work optimally
with data from infants or other populations for whom being still
for long periods of time is problematic. In this paper we compare
and evaluate different methods for artifact elimination and averag-
ing with infant data, and we present two new methods that yield
much improved results. There are a number of challenges involved
in recording and analyzing EEG in young infants and those with
neuro-developmental disorders. First, in infants and young chil-
dren, background EEG activity is relatively high in amplitude and
slow in frequency (Bell and Wolfe, 2008). This is particularly prob-
lematic for ERP analysis, because the amplitude of ERP compo-
nents, typically less than 5 lV, can be ten times smaller than the
background EEG. Second, the recording time that infants can toler-
ate is severely limited, resulting in far fewer trials than with nor-
mal adults. Because the effectiveness of averaging in reducing
background noise depends on the number of trials, it is generally
less effective for infant than for adult data. Furthermore, in order
to obtain high density recordings that allow examination of activa-
tion sources, a system that can tolerate electrical impedances of up
to about 50 kX must be used in practice, because it can be applied
to the head in less than 5 min compared to more than 30 min in the
case where impedances must be kept below 5 kX. Unfortunately,
high impedance recordings often are more subject to extrinsic
noise at the sensors and along the sensor wires.

Third, it is difficult to precisely identify and remove artifacts
arising from eye blinks and eye movements in infants because
the EEG components resulting from such movements are not as
systematic and temporally confined as in adults (Bell and Wolfe,
2008). This means that identification of eye-related artifacts in in-
fant EEG is problematic by itself. Thus, although it is well known
that approaches like ICA are quite effective in removing typical
ocular artifacts in adult data, they are often ineffective when ap-
plied to infant data. Furthermore, because of the limited amount
of time that an infant will remain cooperative, it is not practical
to record EEG responses to eye movements in infants for later tem-
plate matching correction using regression, principal component
analysis (PCA) or source models (Berg and Scherg, 1994; Gratton
et al., 1983; Lagerlund et al., 1997; Lins et al., 1993a,b). Finally, in-
fants tend to move abruptly and often, which introduces high
amplitude artifact into the EEG signal. Such abrupt movements
can cause the temporary loss of good contact between particular
sensors and the scalp in high-impedance systems. These movement
artifacts often contaminate only a few electrodes on any one trial,
and different movements affect different trials at different times,
as illustrated in the example EEG in Fig. 1A. Accordingly, they can-
not be modeled as sources across trials and, as a consequence, they
cannot be removed using ICA. To illustrate this, we applied ICA on
the infant EEG dataset shown in Fig. 1A. The EEG dataset was col-
lected using 124 electrodes in a geodesic net (HydroCel GSN, Elec-
trical Geodesics, Inc., Eugene, OR) with Cz as the reference
electrode. For presentation purposes only, the data is rearranged
such that the channels presented in the figure are the only channels
with noticeable artifact in the shaded interval. We utilized ICA to
remove the artifacts in the shaded interval. The potential artifact
sources identified by ICA are shown in Fig. 1B. The first problem
is that the ICA algorithm spread the artifacts across 14 different
sources. It can be seen that these independent sources also contain
clean brain signals at different time points in addition to the arti-
facts. Consequently, removing the first 14 sources will also remove
valuable EEG data as well. Fig. 1C presents the EEG data after
removing the first 14 sources. As shown in this figure, the artifacts
were partially, but not totally, removed from the EEG data in the
shaded interval. Also, it is clear that the artifacts outside the shaded
interval still remain. In sum, ICA does not work well with infant
data of this type because even if some of the noise is modeled
and removed by ICA, noises in other time windows remain because
they have a different source from those eliminated (Fig. 1AB).

In general, the Conventional Trial Rejection (CTR) method used
with adults is not optimal with infants because the number of tri-
als is small, infants move a great deal, and there are many, varying
sources of artifact. In this context, it should be noted that the odd-
ball paradigm, which is commonly used with infants, is particularly
problematic. In this procedure, ERPs are measured to occasional
changes (deviants) in an ongoing stream of sound events. Because
deviants occur rarely, there are very few trials to go into the aver-
age response to deviants.

From this discussion it is clear that there is a need to develop
better strategies for estimating ERP signals in infant EEG data. In
this paper we systematically compare two alternative methods
against the (CTR) procedure. The first is Independent Channel Rejec-
tion (ICR). We developed this procedure previously (He et al., 2007)
to take advantage of the fact, discussed above, that artifacts in in-
fant data are often limited to one or a few electrode sites on any
particular trial. In ICR, if a trial contains artifact at one electrode
site, data from that site is eliminated for that trial, but data from
the rest of the channels contributes to the average. Thus a different
number of trials are averaged for each channel. While our previous
studies suggest that this method appears to work well (He et al.,
2007, 2009a,b; He and Trainor, 2009), the use of different numbers
of trials for each electrode site might potentially lead to spatial dis-
tortions. In our present comparison of methods we include an eval-
uation of spatial distortion.

The second method we propose is the Artifact Blocking (AB)
algorithm developed by members of our group (Mourad et al.,
2007). The AB algorithm is performed in two steps. In the first step
a reference matrix is constructed from the EEG data matrix by set-
ting to zero all the samples of the EEG data matrix with absolute
amplitude exceeding a pre-specified threshold h. If the value of h
is chosen wisely, the clipped samples will correspond to the
high-amplitude artifacts. As a result, the reference matrix does
not contain any information about the high-amplitude artifacts.
This step is equivalent to the ICR procedure. However, in the sec-
ond step, the AB algorithm goes one step further than the ICR algo-
rithm by utilizing the EEG data matrix and the reference matrix for
estimating a smoothing matrix. The smoothing matrix is estimated
such that multiplying the original EEG data matrix by the smooth-
ing matrix produces a new ‘‘clean” EEG data matrix. As described in
the Supplementary Material, Appendix B, even though the smooth-
ing matrix is applied onto the original EEG data matrix, it has the
effect of ‘‘projecting” the reference matrix onto the range of the ori-
ginal EEG data matrix, i.e., the new EEG data matrix is the closest
matrix (in the range of the original data matrix) to the reference
matrix. Since the reference matrix does not have any information
about the high-amplitude artifacts, the new EEG data matrix will
be clean and does not have any high-amplitude artifacts. Accord-
ingly, the smoothing matrix has the effect of ‘‘blocking” the high-
amplitude artifacts from the EEG data matrix, hence the name
(see the Supplementary Material, Appendix B). Fig. 1D shows the
application of AB to the same EEG data as illustrated with the
ICA algorithm. It can be seen that, unlike ICA, AB successfully elim-
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Fig. 1. Comparison between Independent Component Analysis (ICA) and Artifact Blocking (AB) algorithms in removing high-amplitude artifacts. (A) the EEG data containing
artifacts and high-amplitude background activity, (B) the sources obtained by ICA, (C) the corrected data using ICA, and (D) the corrected data using the AB algorithm.
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inates the artifact. It can also be seen that channels with high-
amplitude artifact are not reduced to zero because AB is a linear
transformation of the original data. In a sense, this method resem-
bles interpolation methods because it tries to recover the EEG sam-
ples corresponding to the zero samples in the reference data
matrix by projecting the reference data matrix onto the range of
the original EEG data matrix. However, in contrast to other interpo-
lation techniques that are usually used in the field of EEG data
analysis, AB has the advantage that it requires no prior knowledge
of the volume-conductor models (Perrin et al., 1987, 1989) or the
three-dimensional scalp surfaces (Law et al., 1993; Srinivasan
et al., 1996). Thus, the computational demands of AB are much
lower. The nature of the AB algorithm makes it particularly suit-
able for data from infants and atypical populations where struc-
tural MRI scans are often not available and there is considerable
individual anatomical variation, including the presence or absence
of holes in the skull which can have a large affect on electrical vol-
ume conduction (Chauveau et al., 2004). The AB algorithm also has
advantages over ICA in that it is data-driven and has no assump-
tions regarding the number of components and the statistical inde-
pendence between the components. As with ICA, conventional
averaging is performed once the AB algorithm has been applied.

Here we present a systematic examination of the three meth-
ods, Conventional Trial Rejection (CTR), Independent Channel Rejec-
tion (ICR), and Artifact Blocking (AB). In order to evaluate the
effectiveness of each algorithm, it was necessary to know the exact
ERP signal to be extracted. Thus, we synthesized the ERP signal as
the scalp manifestation of an auditory source located bilaterally in
the temporal lobes. This signal was then embedded in real EEG
data recorded in silence from 4-month-old infants. Each of the
three algorithms was applied, and the derived ERP estimates were
compared to the known embedded ERP signal. The methods were
compared by examining correlations between embedded and de-
rived ERPs as well as by analyzing the gain (amplitude ratio of de-
rived signal ERP to the original signal) and residuals in signal
power across the scalp. We also examined how these parameters
varied over different numbers of trials for averaging by using ran-
domly resampled trials.

2. Methods

2.1. Subjects

Twelve healthy, full-term 4-month-old infants (5 F, 17 M;
mean = 4.7 months, SD = 0.19) with no known hearing deficits par-
ticipated in the study. Written consent was obtained, and a ques-
tionnaire on musical background was completed.

2.2. Background EEG recording procedure

Three episodes of two-minute background EEG activity were re-
corded from the subjects while no specific auditory stimulation
was given. Only this part of the data during the ‘‘no-auditory” time
windows was used in the present paper. However, these three epi-
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sodes alternated with one in which a single piano tone repeated
every 450 ms and one in which two piano tones (one on 80% and
the other 20% of repetitions) played in random order. Note that
although infants did not receive auditory stimulation, the standard
procedure was followed where they watched a silent movie and
puppet show in order to minimize movements. Some eye move-
ment artifact might have been induced by this, although it is likely
less than what would have been present without this visual focus.
EEG was recorded using 124-sensor HydroCel GSN nets (Electrical
Geodesics, Inc., Eugene, OR) referenced to Cz in a sound-treated
room with background noise level less than 29 dB(A). The sampling
rate was 1000 Hz. Impedance of the electrodes was kept under
50 kX when measured at the beginning of EEG recording.
2.3. Synthesizing the ERP signal

The ERP signal was synthesized using BESA’s dipole simulator
(MEGIS Software GmbH Gräfelfing, Germany) which, given dipole
locations and orientations of brain activity, calculates the ERP pat-
tern at the scalp across the electrode sites in the HydroCel GSN nets
that we used to record the background EEG in the infants. The
auditory evoked responses were simulated with a pair of sequen-
tial downward and upward dipoles co-located in the temporal lobe
approximately in the primary auditory area (Talairach coordinate:
x ±0.66, y 0.02, z 0.20) in each hemisphere. The source waveform
was designed to create, at the surface of the head, a frontal nega-
tivity at 0–300 ms, and a frontal positivity at 240–480 ms with
peak amplitudes 12 nAm and 20 nAm, respectively. No latency jit-
ter or amplitude fluctuation was used. Note that this forward solu-
tion provided 128-channel data, of which four electrodes on the
forehead were omitted as these are not used in the nets for infants.

The real background EEG data for each of the 12 infants were
off-line filtered between 0.5 and 20 Hz, down sampled to 215 Hz
and the synthesized ERP signal was embedded (added) every
700 ms. Thus, epochs were 700 ms, including prestimulus and
poststimulus periods of 100 ms and 600 ms, respectively. The
resulting number of trials was thus 514, except for one subject
whose total number of trials was 385 because of a shorter recorded
EEG episode than for the other subjects. Both the synthesized ERP
and the background EEG data used a common average reference at
Cz.
2.4. Estimation of the ERP signal using CTR, ICR and AB

For each infant, the embedded ERP was estimated using the
CTR, ICR (see the Supplementary material, Appendix A) and AB
(see the Supplementary material, Appendix B) methods. In apply-
ing the AB algorithm, a single smoothing matrix was used for each
data set as the results did not improve when different smoothing
matrices were used for different data segments (see the Supple-
mentary material, Appendix B). The threshold h used within the
AB algorithm was empirically selected as ±50 lV as it was the low-
est value for which the output EEG through the AB algorithm was
not over-smoothed (see the Supplementary material, Appendix B).
For all three methods, the threshold b, for assuming the presence of
artifact, was set to ±100 lV. Note that for the AB procedure, b was
applied to the output of the AB algorithm. While 514 trials per in-
fant is a reasonable number, in more than 80% of trials the outer
ring of channels met the criterion for the presence of artifact. Thus,
these 18 channels were removed from further analysis. The mean
number of trials per infant obtained during analysis for each meth-
od was 131, 441.7, and 492.3 for CTR, ICR, and AB, respectively.
Note that the number of trials was much reduced in CTR compared
to ICR and AB. Also the range and variance across individuals in the
number of trials varied widely across the methods: CTR (min: 13,
max: 238, SD: 83.0), ICR (min: 46, max: 504, SD: 67.8, mean across
electrodes), and AB (min: 376, max: 504, SD: 36.65).
2.5. Evaluation of the estimated ERP

To compare the estimated ERP and the synthesized ERP signal in
each individual data set, the following simple linear model was
considered. For the kth EEG dataset, let the estimated ERP signal
at the ith electrode be expressed as

yk
i ¼ ak

i si þ nk
i ; i ¼ 1; . . . ;N: k ¼ 1; . . . ;Neeg ð1Þ

where si 2 RðTo�1Þ is the known embedded ERP signal at the ith elec-
trode, ak

i is an unknown gain/attenuation parameter, nk
i 2 RðTo�1Þ is

the residual background noise in the estimated ERP signal, and Neeg

is the number of EEG data sets (Neeg = 12). Based on this model,
three indices were derived: correlation coefficient between the esti-
mated and original ERP waves, gain, and power of residual noise.
2.5.1. Correlation coefficient between the embedded and estimated
ERP signals

The correlation coefficient between the estimated ERP signal, yk
i ,

and the known embedded ERP signal si quantifies how well the
waveform of the embedded ERP signal is preserved in the esti-
mated ERP signal. A higher correlation coefficient indicates better
performance.

Specifically, for the kth infant, let Ryisi
[k] denote the correlation

coefficient between yk
i and si. Then the average correlation coeffi-

cient at the ith electrode is calculated as

Ri ¼
1

Neeg

XNeeg

k¼1

Ryisi
½k�; i ¼ 1; . . . ;N ð2Þ

For each of the three methods, the correlation was calculated at
each electrode site for each of the 12 infants. The correlations were
then averaged across the 12 infants and visualized across electrode
sites in topographic maps. A repeated measures Analysis of Vari-
ance (ANOVA) with two within-subjects factors (method: CTR,
ICR, AB; electrode group: left front-temporal, right front-temporal,
left occipital, right occipital) was conducted to determine whether
some procedures produced statistically significantly higher corre-
lations than others. Post-hoc tests were conducted using Fisher’s
Protected Least Significant Difference.
2.5.2. Gain and spatial distortion
The correlation coefficient is insensitive as to whether the esti-

mated amplitude matches the embedded amplitude of the ERP,
and whether the gain is consistent across electrode sites. The closer
the gain parameter, ak

i , is to 1, the better the obtained ERP. More
importantly, the more consistent the gain parameter across chan-
nels, the less spatial distortion of the ERP signal. The gain parame-
ter was defined as

âk
i ¼ arg min

a
yk

i � asi

�� ��2

2

This problem has a closed form solution given by

âk
i ¼

sT
i yk

i

ST
i si

; i ¼ 1; . . . ;N ð3Þ

The resulting estimation of âk
i was averaged across the 12 in-

fants at each electrode site, and expressed in a topographic map
of the gain parameter. Using the standard deviation across all the
electrodes as an index of spatial distortion in each infant, the three
different artifact-rejection methods were compared statistically by
one-way repeated measures ANOVA.
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2.5.3. Residual power
The residual power parameter quantifies the amount of noise

left in the estimated ERP signal after applying each artifact-rejec-
tion method. Clearly, the best estimator is the one with smallest
residual power. Using the estimated gain parameter âk

i , the resid-
ual activity in the estimated ERP was calculated as
n̂k
i ¼ yk

i � âk
i si ð4Þ
at the ith electrode. As with the parameters above, the power of n̂k
i

was averaged across the infants at each electrode site and mapped
out topographically. The different artifact-rejection methods were
compared statistically by one-way ANOVA on the averaged power
across electrodes in individual subjects.
2.5.4. Effect of number of trials
We examined how the performance of the algorithms varied as

a function of different numbers of trials, using the three parame-
ters described in the previous sections. First, 500 trials of the same
simulated data (real background EEG and the embedded ERP sig-
nal) were generated for each subject (one was omitted because
the recorded EEG was less than the length of 400 trials). We then
randomly selected 100 trials and calculated the ERP at Fz as well
as the three measures of performance, correlation, gain, and resid-
ual power. This selection was repeated 50 times with replacement
to obtain the best representative estimate of the ERP extracted by
each method as if there were 100 trials in the experiment, under
the assumption that the background EEG obtained from each sub-
ject follows the same normal distribution. We then repeated this
procedure for 200, 300, and 400 trials. Mean and standard error
of the mean for each of the three parameters for each subject
was evaluated by two-way ANOVAs with two within-subject fac-
tors, number of trials (100, 200, 300, 400) and method (CTR, ICR,
AB). The significance level was set at 0.05. Post-hoc analysis was
conducted using Fisher’s Protected Least Significant Difference.
3. Results

Fig. 2 shows the original and the estimated ERP at a set of se-
lected electrodes. It can be seen that the ERP estimated using the
CTR procedure was noisy compared to those using ICR and AB. In
particular, the waveform at some electrodes was drastically differ-
ent from the embedded signal, with the absence of peaks in some
cases and falsely added peaks in others. On the other hand, both
ICR and AB successfully estimated the precise morphology of the
embedded waveforms at every electrode site. The amplitude of
the ERP estimated by ICR and AB was slightly larger or smaller than
that of the original ERP signal depending on the electrode location.
The first peak around 150 ms was slightly exaggerated by the ICR
procedure at some sites, most noticeably at occipital electrodes.

3.1. Correlation coefficient between the embedded and estimated ERP
signals

Topographic maps of the correlation coefficients between the
original ERP and the estimated ERP signals averaged across the
12 infants for each of the three methods are shown in Fig. 3. The
ERP signals estimated by CTR have low correlation coefficients at
all electrode sites, whereas the ERP signals estimated by both the
AB and ICR techniques have high correlation coefficients at most
electrode sites. The few sites with low correlation coefficients for
the ICR and AB methods are a consequence of the power distribu-
tion of the original embedded ERP signal, which is shown in the
upper panel of Fig. 3. Those electrodes at which the embedded sig-
nal has low power (represented by the blue color) correspond to
those at which the correlation coefficients are low (blue color in
the correlation coefficient maps of the bottom row of Fig. 3). This
is due to the fact that it is impossible to estimate in noise a signal
whose amplitude approaches zero. Consequently, a low correlation
coefficient between the embedded and estimated signal is inevita-
ble at these sites. Correlation coefficients were averaged at left and
right frontal sites and at left and right occipital sites for each infant
and each artifact rejection procedure, and subjected to a two-way



Fig. 3. Correlations between the embedded and estimated ERPs. (Upper panel) Topographic map of the power distribution of the embedded ERP signals. (Lower panel)
Correlation coefficients between the embedded ERP signal and the ERP signal estimated using the Conventional Trial Rejection (CTR), Independent Channel Rejection (ICR), and
Artifact Blocking (AB) procedures.
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ANOVA with method and electrode group as within-subject fac-
tors. Results revealed a robust difference between procedures,
F(2, 11) = 13.4, p = 0.0002, and no interaction between methods
and electrode groups. Post-hoc tests (Fisher’s Protected Least Sig-
nificant Difference) revealed that there was a significant difference
between CTR and ICR (p < 0.01) and between CTR and AB
(p = 0.0001). There was no significant difference between ICR and
AB.

In summary, both AB and ICR do very well at estimating the
embedded ERP signal in background EEG data from 12 infants,
whereas the CTR does poorly. In large part, this result reflects the
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3.2. Gain and spatial distortion

The upper row of Fig. 4 presents the topographic maps of the
grand mean gain parameter, representing the amplitude of the
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Fig. 5. Residual power. Topographic maps of the distribution of the residual background noise in the ERP signal estimated using Conventional Trial Rejection (CTR) (left),
Independent Channel Rejection (ICR) (middle), and Artifact Blocking (AB) (right).
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parameters estimated at all electrodes for all infants (i.e. each plot
is a histogram of N � Neeg values).

Ideally, the amplitude parameter should equal 1. Of most
importance, when there is little spatial distortion, the gain param-
eter will be relatively constant across the head. As shown in the
upper panel of Fig. 4, the CTR procedure produced large spatial dis-
tortion, that is, a wide variation in the gain parameter across sites,
whereas the variation produced by ICR and AB techniques is much
less. This observation is confirmed by the histogram plots shown in
the lower panel of Fig. 4. The variances of the gain parameters
when the ERP signal is estimated using CTR, ICR, and AB are
15.08, 4.20, 2.63, respectively. The variance in the gain parameters
were calculated for each infant, and converted to standard devia-
tion. The three procedures were compared by a one-way repeated
measures ANOVA. Results showed the methods differed signifi-
cantly, F(2, 11) = 8.08, p = 0.002. Post-hoc tests showed that the
standard deviation was smaller in AB than in CTR (p < 0.01) and
ICR (p < 0.05). The difference between ICR and CTR approached sig-
nificance (p = 0.08). Clearly, the AB method has the smallest vari-
ance among the three methods, the ICR has somewhat larger
variance, and the CTR has the largest variance, and hence worst
performance. Thus, the AB method produces the least spatial dis-
tortion, the ICR method next least, and the CTR method the most
spatial distortion.

3.3. Residual power

The topographic maps of the average residual power are shown
in Fig. 5. As shown in this figure, the AB procedure produced the
lowest residual power at most of the electrodes, while the CTR pro-
cedure produced the high residual power at almost of the elec-
trodes. While ICR shows lower residual powers than CTR, the
residual powers associated with ICR vary somewhat from electrode
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

100 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

100 200 300 400

AB
ICR
CTR

Number of Trials

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Av
er

ag
e 

ga
in

 fa
ct

or

Numbe

BA

Fig. 6. Effect of the number of trials on the three performance measures. (A) Correlation c
number of trials (100, 200, 300, and 400) was randomly selected from data at Fz electro
methods. The error bars indicate the standard error of the mean (SEM).
to electrode, which is likely a direct result of utilizing different
numbers of trials for estimating the ERP signal at different elec-
trodes. Statistically, the average residual power at the average of
left and right frontal and occipital sites differed across procedures
(F(2,11) = 4.46, p = 0.02), as examined by a one-way ANOVA. Post-
hoc tests revealed that the average residual power was larger in
CTR than both ICR (p < 0.05) and AB (p < 0.05), whereas there was
no significant difference between ICR and AB.

3.4. Effect of number of trials

Because fewer than 400 trials are often obtained from individ-
ual infants, we examined the effect of the number of recorded trials
on the performance of the three algorithms using the three param-
eters described in the previous section at a single electrode, Fz,
where the signal was large. We calculated the three parameters
through the averaged ERP data obtained from resampled trials
with a designated number of trials as described in the methods
section. The results are plotted in Fig. 6. Although performance im-
proves with an increasing number of trials for all three algorithms,
it can be seen that across all numbers of trials, the AB algorithm
has the best performance while the CTR algorithm has the worst
performance. Specifically, the AB algorithm has the highest corre-
lation coefficient, the lowest residual power, and an almost con-
stant gain factor. The ANOVA on correlation coefficient (Fig. 6A)
revealed significant effects of number of trials, F(3, 30) = 131.5,
p < 0.0001, and method, F(2, 20) = 4.18, p = 0.03), and no interac-
tion. Post-hoc comparison showed that all possible pairs with dif-
ferent numbers of trials were significantly different (p < 0.0001),
and that AB was better than CTR overall (p < 0.01), and for each
number of trials (100, 200, 300: p < 0.01, 400: p < 0.05). In contrast,
the ANOVA for the gain parameter (Fig. 6B) showed no systematic
differences between the three methods across number of trials. Fi-
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nally, for residual power (Fig. 6C), number of trials, F(3, 30) = 4.38,
p < 0.01, method F(2, 20) = 3.83, p = 0.04), and their interaction,
F(6, 60) = 2.90, p = 0.02), were all significant. Number of trials made
a significant difference particularly between 100 and 300
(p < 0.01), and between 100 and 400 (p < 0.01). The residual power
was significantly larger in CTR than ICR and AB (both: p < 0.05). For
100 trials, the effect of method was significant (p < 0.05) such that
both ICR and AB were better than CTR (p < 0.05). For 200 trials, the
methods differed significantly (p < 0.05) because ICR was margin-
ally better than CTR (p = 0.05), while AB was significantly better
than CTR (p < 0.05). With more trials, the effect of method on the
residual power was not significant at the levels of 300 and 400 tri-
als, although the former did approach significance (ns, p = 0.07).
Thus, overall, the fewer the number of trials, the greater the supe-
riority of the AB algorithm over the other two. The results also indi-
cate that ICR works considerably better than the CTR algorithm.
4. Discussion

Both Independent Channel Rejection (ICR) and Artifact Blocking
(AB) procedures were far better than the Conventional Trial Rejec-
tion (CTR) procedure at estimating an ERP signal embedded in in-
fant EEG, as indicated by all three evaluation measures examined.

The poor performance of CTR is likely related to the lower num-
ber of remaining trials compared to the other two procedures. On
average, AB and ICR resulted in three times the number of trials
compared to CTR. In contrast, the ICR and AB procedures utilize
techniques to eliminate noise without throwing away the signal
at the same time. As shown in the results (Fig. 6), AB and ICR work
significantly better than does CTR, even at 100 trials, the lowest le-
vel of recorded trials tested. In particular, AB gives significantly
better correlation and much lower residual power compared to
CTR. With increasing numbers of trials, the correlation and residual
power improve regardless of method. Consequently, the detailed
results (Figs. 3–5) using all the available trials generalize to smaller
numbers of trials. In a typical infant ERP recording, the number of
trials is usually less than several hundred. It is noteworthy that the
number of trials in the CTR procedure is also greatly affected by the
choice of channels, such that when those close to the eye or ear or
the edge of the net are included, many trials would be rejected by
the CTR method. In the present paper we have excluded these elec-
trodes before applying the algorithms. Their inclusion would likely
lead to even larger differences between the methods.

The waveform morphology and peak latencies were well esti-
mated by both ICR and AB, but not by CTR. For ICR and AB, there
were slight amplitude differences at some electrode sites com-
pared to the embedded signal. In contrast, the morphology pro-
duced by CTR was quite inaccurate at many electrodes, making
the amplitude and latency of peaks difficult to estimate. Perhaps
the CTR data could have benefited from further low-pass filtering
to retrieve peak information, but this may well have distorted
the peaks further. Some research on infants and young children
has suggested that morphology and peak latency have more con-
sistent gradual change over the course of maturation than do the
amplitude measures of each peak (Morr et al., 2002;Ponton et al.,
2000). The reason for this, however, might be partly because ERP
estimates using the standard CTR procedure produce data that is
more variable in amplitude than latency across sessions and indi-
viduals. The use of the ICR or AB procedures might render peak
amplitude estimations sufficiently robust as to be useful, as well
as give more accurate estimates of morphology and peak latency.

The results showed that the AB and ICR procedures performed
similarly in terms of correlations between the estimated and
embedded ERP signals (Fig. 3). However, the AB procedure had a
slight advantage over ICR in producing less spatial distortion across
the head, that is, the estimated amplitude was more consistently
related to the amplitude of the embedded signal across electrodes
(Fig. 4). This is particularly important if source analysis is to be per-
formed to estimate where in the brain particular components orig-
inated. AB also excelled over ICR in residual power (Fig. 5),
probably because AB uses more information from the recorded
data than does ICR. Although ICR does not exclude an entire trial
if there is noise at some electrodes, it does exclude those electrodes
for that trial. By contrast, AB infers the signal on artifact-contami-
nated data segments from available artifact-free data segments.

One obvious advantage of AB over ICR is that AB is applicable to
continuous data whereas ICR is not. Thus, AB can be used to re-
move high-amplitude artifacts from EEG data that will be analyzed
in the frequency domain, for example, to measure steady state re-
sponses and power in frequency bands such as alpha, beta and
gamma. AB also has advantages over other interpolation proce-
dures for dealing with missing data because of its light computa-
tional load and its lack of theoretical assumptions in contrast to
source modeling approaches. Although we only examined ERP esti-
mation in the present study, these features of AB suggest that it
will be particularly useful for clinical applications where it is nec-
essary to obtain data from difficult subjects in a short period of
time and analyze it quickly.

5. Conclusion

Our analysis revealed that the Artifact Blocking (AB) and Inde-
pendent Channel Rejection (ICR) methods perform much better than
Conventional Trial Rejection (CTR) at extracting ERP signals in noisy
infant EEG data, as measured by correlations between estimated
and original (embedded) ERP signals, variance in estimated com-
pared to embedded amplitude across the scalp (spatial distortion)
and residual variance in power. Furthermore, the AB method had
significantly lower spatial distortion than ICR, making it a better
choice for analysis of the sources of activity in the brain. The AB
method has advantages over other interpolation methods in that
it has few assumptions and is fast to calculate. The AB method
has the additional advantage that it can be applied to continuous
data and is therefore a suitable method when the goal is to exam-
ine steady state activity or activity in different frequency bands
such as alpha, beta, and gamma.
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