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The neuroscientific study of musical behavior has become a significant field of research during the last decade,
and reports of this research in the popular press have caught the imagination of the public. This enterprise has
also made it evident that studying the development of musical behavior can make a significant contribution to
important questions in the field, such as the evolutionary origins of music, cross-cultural similarity and diversity,
the effects of experience on musical processing, and relations between music and other domains. Studying musical
development brings a unique set of methodological issues. We discuss a select set of these related to measurement of
the electroencephalogram (EEG) and magnetoencephalogram (MEG). We use specific examples from our laboratory
to illustrate the types of questions that can be answered with different data analysis techniques.
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Origins of electroencephalogram and
magnetoencephalogram activity

Electroencephalography (EEG) measured at the sur-
face of the head is largely blind to action potentials
and mainly reflects the summation of postsynaptic
field potentials.1–4 When a neurotransmitter acts on
a single cell, it creates an electric dipole around that
cell. For example, an excitatory neurotransmitter
can cause current to flow into the apical dentrites of
a cell, creating a net negativity outside this area of
the cell. At the same time, current will flow out of the
cell in the region of the cell body and basal dentrites
creating a positivity outside the cell at this point. To-
gether, these two actions create a small dipole. When
many (hundreds of thousands) neurons are aligned
and depolarize at the same time, the small dipoles
they create will sum into a field that is large enough
to measure at the surface of the head.5–9 Because
pyramidal cells tend to be aligned and perpendicu-
lar to the cortical surface, it is likely that EEG largely
reflects their activity. It is important to note that
to the extent that neurons are differentially excita-
tory and inhibitory and to the extent that they are
oriented in different directions, as can happen with

the folding of the cortex, their postsynaptic activity
can cancel. Thus, much of the neural activity in the
brain is opaque to EEG recordings.10

A further complication in interpreting EEG activ-
ity measured at the surface of the head is that cortical
tissue is conductive and thus electrical fields will to
some extent spread in all directions, blurring spatial
specificity at the surface of the head. In addition,
different components of the head, such as the skull
and eye holes, have different effects on volume con-
ductance, and thus dipoles originating in different
brain regions will be differentially distorted. From a
developmental perspective, the skull is thinner and
the fontanels do not close until some months af-
ter birth, leading to age-specific differences in the
distortion of the fields.11 These factors complicate
determination of the source location of EEG activity
at different ages.

An electrical dipole has an associated magnetic
field perpendicular to the electrical dipole, oriented
according to the right-hand rule. Such magnetic
fields can be measured with magnetoencephalog-
raphy (MEG), which uses an array of supercon-
ducting quantum interference devices (SQIDS).12–14

Near the surface of the head, the magnetic fields
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generated by the brain are on the order of a few fem-
totesla, which is several orders of magnitude smaller
than magnetic fields in the ambient environment,
so a magnetically shielded room and active noise
cancellation are necessary. Magnetic fields are not
smeared by brain tissue, so determination of the
brain source location of measured activity can be
more precise with MEG than EEG, but also because
of this, sources oriented radially to the surface of the
head cannot be seen with MEG.

EEG and MEG have certain advantages over func-
tional magnetic resonance imaging (fMRI). They
have excellent temporal resolution of less than a mil-
lisecond (compared with several seconds for fMRI),
so long as appropriate sampling rates are used. Un-
like fMRI, both EEG and MEG are silent, which is
particularly advantageous for auditory work. EEG
also has the ethical advantage over fMRI of being
noninvasive and virtually risk free. EEG has some
advantages over MEG for developmental research.
In particular, it is difficult to get infants and young
children to stay still, and EEG is more tolerant
of movement artifacts. Although segments of the
EEG on which movement occurred might need to
be eliminated (because the EEG sensors sit on the
head), once movement has stopped, clean record-
ings can resume. With MEG, however, the child sits
or lies down with his or her head in the rigid struc-
ture of the dewar containing the SQIDS, so if the
head moves significantly with respect to the dewar,
the MEG recordings cannot be continued. EEG is
also much cheaper to purchase and operate, and
portable EEG machines are becoming common, al-
lowing easier access to special populations. On the
other hand, because MEG is transparent to head tis-
sues, it has better spatial resolution of the measured
signals.

Animal studies using electrodes inserted into cor-
tical tissue indicate that extracellular electrical field
potential patterns show complex patterns of electri-
cal sources and sinks across the six cortical layers.7,8

In general, however, it appears that depolarizations
in deeper layers with passive returns above will ap-
pear on the surface as positivities, whereas depo-
larizations in more superficial layers with passive
returns below will appear on the surface as negativ-
ities.5,6,8 This is important for interpreting EEG in
infants and young children as the cortex matures in
a layer-specific fashion. For example, although cell
bodies in auditory areas are essentially all in place

by birth, maturation of neurofilament expression
that enables fast axon potentials and meaningful
communication between neurons occurs in certain
layers before others.15 Neurofilament is expressed
only in layer I at birth. Its expression in deeper cor-
tical layers (lower III, IV, V, and VI) can be seen by
4 months and reaches adult levels by 3 to 5 years of
age. Neurofilament is not expressed in upper layers
(I, II, and upper III) until 5 years of age, and does not
reach adult levels until about 12 years of age. Thus
it would be expected that event-related potentials
(ERPs) derived from EEG recordings would look
very different early in development and, in partic-
ular, contain more positive components early on.9

Indeed this is what is generally found.16–24

Issues in recording EEG early
in development

There are two main issues specific to measuring
EEG in infants and young children. First, atten-
tion spans are limited and young participants tire
quickly, so experiments must be short. The num-
ber of trials needed depends on a number of factors
including the size of the component of interest, the
efficiency of the signal processes techniques used
for analysis, and the amount of noise or artifact
in the recordings. The faster the electrodes can be
placed on the head and impedances checked, the
more time will be left for the EEG recording. In this
regard, high impedance systems involving nets of
electrodes imbedded in sponges that are dipped into
a conducting saline solution can be applied much
more quickly than electrodes in low impedance sys-
tems requiring electrogel and abrasion of the skin.
However, the former may be more subject to noise
and may not be ideal for measuring small fast com-
ponents such as those originating from the brain
stem. Second, it can be difficult to keep young par-
ticipants from moving excessively. Because muscle
movements generate electrical field potentials an or-
der of magnitude larger than potentials originating
in the brain when measured at the surface of the
head, the more the participant moves, the noisier
will be the EEG recordings. Interestingly, young in-
fants tend to move less than older infants, with the
most challenging ages in this regard being between
about 1 and 3 years. During electrode application
and EEG recording, it is helpful to have one re-
searcher whose job is to distract infants with toys,
videos appropriate for infants, soap bubbles, and so

26 Ann. N.Y. Acad. Sci. 1252 (2012) 25–36 c© 2012 New York Academy of Sciences.



Trainor Measuring music development using EEG and MEG

on. If the infant is sitting on the parent’s lap, the
parent can also help by gently holding the infant’s
hands away from the electrodes. Figure 1 shows how
to happily and efficiently place an electrode net on
an infant.

Data preprocessing: dealing with artifact
in developmental recordings

In addition to brain activity related to the pro-
cesses of interest, measured EEG signals also con-
tain “noise,” largely in the forms of movement ar-
tifact and brain activity irrelevant to the processes
of interest.1,10 In order to see the activity of interest,
typically many trials are presented and the result-
ing activity averaged across trials. Assuming that
the timing of the noise is unrelated to that of the
signal, the more the trials are averaged together, the
better the signal-to-noise ratio. However, given that
the amplitude of movement artifact can be an order
of magnitude larger than that of the signal, addi-
tional methods are typically necessary to get a good
signal-to-noise ratio within a reasonable number
of trials. In the most common approach, here called
conventional trial rejection (CTR), entire trials con-
taining large amplitude artifact at any electrode are
eliminated from the average. This approach works
well for most adult data for which there are few tri-
als contaminated with movement artifact. However,
for data from infants or young children, CTR can
result in the elimination of most of the data. A sec-
ond approach in common usage is specific to the
elimination of eye movements and involves mod-
eling the dipolar sources of eye movements.25 In
addition to the recordings of experimental inter-
est, EEG can be recorded for each subject in re-
sponse to eye blinks and eye movements, and EEG
sources related to eye movements can be modeled.
These sources can then be eliminated subject by sub-
ject in the EEG data from the experiment of inter-
est. Unfortunately this method does not work well
with infants and young children whose eye blinks
and eye movements are variable and not temporally
confined.26 There is also the problem of eliciting
eye movements, and spending time recording eye
movements takes time away from the recordings
of experimental interest. A third approach is to per-
form independent component analysis (ICA) on the
EEG data.27,28 In adult data, the first few (largest)
components of the analysis will be noise and these
can be eliminated to reveal the signals of interest.

Unfortunately, infant artifact often behaves differ-
ently. Rather than consisting of predominantly eye
movements, infants can make sudden whole head
movements, jaw movements, and scrunch the backs
of their necks. Furthermore, such movements can
cause an electrode to temporarily make a bad con-
nection with the scalp. Fujioka et al. have illustrated
that ICA does not typically work well with infant
data.29

He et al.16 introduced a method of independent
channel rejection (ICR) whereby, if a particular elec-
trode shows a high amplitude artifact on a particular
trial, the data from that electrode are eliminated on
that trial, but data from “clean” electrodes are kept.
Thus, ICR assumes that electrodes can be differen-
tially contaminated with artifact on the same trial.
With this method, much less data are eliminated
than with CTR, in which data from all electrodes are
eliminated when there is a contaminated electrode.
Mourad et al.30 generalized the idea of ICR and
developed the artifact blocking (AB) algorithm in
which all trials are retained, but artifact is “blocked”
or reduced as follows. This algorithm assumes that
amplitudes greater than a certain threshold reflect
artifact and attempts to reduce them toward zero
by estimating a smoothing matrix that, when mul-
tiplied by the original EEG data matrix (electrode
by time), creates a “clean” version of the EEG data
matrix. In some regards, AB is similar to interpola-
tion, in which an eliminated electrode is estimated
from the surrounding electrodes, but it has the ad-
vantage of being completely atheoretical (does not
require any knowledge of EEG conduction or brain
and skull properties) and is computationally much
less demanding.

Fujioka et al. 29 extensively compared ICR, CTR,
and AB methods. They recorded real infant EEG ac-
tivity in the absence of a stimulus and then repeat-
edly imbedded an artificially generated, and there-
fore known, EEG signal. They then analyzed the
data using each of the three artifact rejection meth-
ods and compared the ability of each at extract-
ing the known EEG signal. They found that ICR
and AB were much better than CTR at extracting
the EEG signal. Correlations between the embed-
ded and extracted signals were much higher and
residual variance much lower for ICR and AB than
for CTR. Furthermore, CTR showed greater spatial
distortion across the scalp than the other methods
and AB showed the least spatial distortion, which
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Figure 1. (A) Series of photographs illustrating placing an electrode net on an infant. The circumference of the infant’s head is
measured to determine net size while the mother fills out a questionnaire. Then one experimenter distracts the infant with toys
while the second experimenter places the net on the infant’s head and adjusts the placement of the electrodes. Once the net is on,
it is quite comfortable and most infants are content. Photos by Nicole Folland. (B) For data analysis, the channels across the head
can be averaged within each area to increase signal-to-noise ratio. From work by He et al.16 Reprinted with permission of MIT Press
Journals.
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is particularly important when attempting to locate
the sources of activity in the brain. To a large ex-
tent, the differences across methods appeared to be
related to the amount of data that remained for anal-
ysis after artifact rejection. Thus, for adult data, AB
might be less useful, but for data from infants and
young children, it can offer a marked improvement
over traditional methods.

Using EEG and MEG to understand
musical development: examples using
different data analysis techniques

Time waveforms
EEG activity reflecting the processing of a sound
event is termed an event-related potential (ERP). In
the time domain, ERPs consist of a series of pos-
itive or negative deflections (components) across
time from the onset of the sound that reflect activity
from the nuclei of the brainstem (first 15 ms after
sound onset), primary auditory cortex (middle la-
tency responses; up to 50 ms), and areas beyond (late
potentials; 50 ms and later). From a developmental
perspective, differences across age can be measured
in all components. From a musical perspective, ef-
fects of musical training can be seen in brainstem
encoding,31 middle latency responses,32 as well as
in various components of the late potentials.33–37 A
few examples from our lab will be described to il-
lustrate the types of questions that can be addressed
by examining time waveforms.

Perhaps one of the most interesting findings in the
development of auditory ERPs is that components
originating in secondary auditory cortex, N1 and P2,
show a very protracted developmental trajectory.
Note that because N1 and P2 are processed in audi-
tory areas around the Sylvian fissure, the fields that
they produce at the surface of the head are oriented
such that for N1, a negativity is seen at frontal sites in
conjunction with a positivity at posterior sites, and
vice versa for P2. Although obligatory responses to
sound in adults, these components are so small as
to be difficult to measure in children 4 to 5 years
of age. With increasing age, they increase in am-
plitude and decrease in latency, reach a maximum
amplitude around 10 to 12 years of age, and subse-
quently decrease in amplitude, reaching stable adult
levels in the late teenage years (see Fig. 2A).36,38,39

The development of these components appears to
be affected by musical experience in that they are
larger in adult musicians than nonmusicians. Fur-

thermore, they are larger in 4- to 5-year-old children
taking music lessons compared to children not tak-
ing music lessons (see Fig. 2B).36 In sum, examining
the developmental trajectories and effects of musi-
cal experience on various components in the time
domain can yield valuable information about when
processing develops for different musical features,
and differential effects of musical experience at dif-
ferent ages.

Difference waves and mismatch responses
As discussed in the previous section, some EEG
components that are obligatory responses to sound
in adults, such as N1, are very small or nonexistent
during infancy.36,38,40,41 Interestingly, although N1
originates in superficial layers of auditory cortex, it
likely reflects feedback from other cortical areas6,8,42

and is sensitive to attentional manipulations.43,44

On the other hand, automatic (preattentive) re-
sponses to occasional changes in an ongoing stream
of sounds elicit mismatch responses that are likely
processed largely within auditory cortex. In adults,
such changes elicit a frontal negativity at the surface
of the head between 130 ms and 250 ms accompa-
nied by a reversal at occipital sites.45,46 A mismatch
response can also be elicited in young infants in
response to occasional changes in pitch,16,17,21,47–50

duration,51,52 and tonal patterns.18,53 However, in
young infants, only a slow frontally positive mis-
match response is typically evident.9 The age at
which the negative response emerges appears to de-
pend to some extent on the feature that is changed.
For occasional changes in pitch, at 2 months the
slow positive response dominates, but the negative
response can be seen at 3 months and is quite ro-
bust at 4 months (Fig. 3), whereas for temporal
gap detection and changes in melodic patterns, the
negative response does not emerge until later.51,53

Interestingly, at intermediate ages, both the posi-
tive and negative mismatch responses can be seen at
the same time, in the same infants, suggesting that
they have different cortical origins.16 With respect
to musical training, mismatch negativity is larger
in musicians than in nonmusicians for changes
in melodies in transposition without accompani-
ment54 and in polyphonic contexts.55 There are
few studies involving musical experience in young
infants. However, one study exposed infants for
20 min a day for a week to melodies in either gui-
tar or marimba timbre.50 Subsequently, mismatch
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Figure 2. Development of ERPs elicited by pure, violin, and piano tones. (A) P1 reaches a maximum at 8 to 9 years of age at frontal
(F2, F4) sites and diminishes thereafter. N1 reaches a maximum at 10 to 12 years of age at the vertex (Cz) and diminishes thereafter.
(B) P1 and N1 are enhanced for piano tones in Suzuki piano students. The dotted vertical line represents the onset of the stimulus.
From work by Shahin et al.35 Adapted with permission of Wolters Kluwer/Kippincott, Williams & Wilkins.

responses were measured to quartertone changes in
the pitch of a repeating tone, in one block with tones
in guitar timbre and in another block with tones in
marimba timbre. Differential responses were found

favoring the timbre to which infants had been
familiarized.

In sum, mismatch responses provide a rich con-
text in which to measure the development of many
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Figure 3. Development of mismatch responses to pitch change in 2-, 3-, and 4-month-old infants. Grand average difference waves
are shown for each age group (filtered between 0.5 and 20 Hz), illustrating the slow positive difference wave at 2 months of age and
the emergence of the mismatch negativity with increasing age. Difference waves at electrode Fz are overlaid for the three age groups
at the bottom. The vertical axis represents the onset of the sound. From work by He et al.16 Reprinted with permission of MIT Press
Journals.

aspects of musical perception and the effects of mu-
sical experience at different ages.

Oscillatory responses
Even in the absence of specific stimulation, EEG and
MEG recordings reveal ongoing oscillatory brain
activity thought to reflect communication between
networks of neurons. Indeed, one view is that the
evoked potentials described in the last two sections
reflect phase alignment of ongoing oscillatory activ-
ity that becomes entrained for analyzing a partic-
ular input.56 Thus, changes in oscillatory rhythms
in response to an auditory stimulus can reveal im-
portant aspects of stimulus processing. Oscillatory
responses have been classified into five main fre-
quency ranges, delta (0–4 Hz), theta (4–8), alpha
(8–12), beta (12–30), and gamma (30–100), roughly
according to proposed associated brain functions. A
full discussion is beyond the scope of this paper, but
can be found in recent reviews.57,58 However, oscil-
latory responses change greatly over development,
can be affected by attention, and can also reflect-
specific effects of experience and training.59–63 Thus
we predict that they will be used increasingly in the
study of musical development. Here, we briefly give
examples in the alpha, beta, and gamma frequency
ranges.

In the resting state, alpha is a dominant rhythm
in the adult brain, and it decreases in amplitude

in selective regions with stimulus presentation in
different modalities.64–65 Similar desynchronization
can be seen in infancy, such that alpha-band oscilla-
tions originating from auditory cortex (termed tau)
decrease in amplitude with auditory stimulus pre-
sentation.66 However, the dominant tau frequency
suppressed by sound changes with development: at
4 months of age it is 4 Hz, and by 12 months of
age it is 6 Hz. Effects of experience on this develop-
ment remain unknown, but further studies of the
tau rhythm have the potential to increase our un-
derstanding of the development of musical sound
processing.

Beta band activity has long been of interest as it
is a dominant frequency in the motor system and
its amplitude modulates with motor movement.67

Recent studies indicate that the amplitude of beta
activity originating in auditory cortex is modulated
by the presentation of a steady beat.68 In partic-
ular, beta amplitude decreases after each beat and
rebounds before the onset of the next beat (Fig. 4).
This rebound occurs across different beat tempi, in-
dicating that the brain is predicting the timing of
the next beat.69 Applying such analyses to develop-
mental data has the potential to further our under-
standing of developmental and experiential aspects
of musical rhythm processing.

Gamma band activity is of interest in the au-
ditory system as it is thought to reflect attention,
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Figure 4. Beta modulation by sound presentation. The time series for event-related changes in beta (15–20 Hz) activity is shown
in response to a regular stimulus sequence (top) and in response to the omission of an expected stimulus (bottom). The sound
stimulus is shown above for the regular sequence and below for the omission sequence. Beta activity decreases in amplitude following
stimulus onset and rebounds prior to onset of the next stimulus. From work by Fujioka et al.68 Reprinted with permission from
John Wiley & Sons.

anticipation, and expectation70–72 and the bind-
ing of auditory features into a unitary percept.73

Gamma band activity (indeed, any oscillatory ac-
tivity) can be analyzed in two different categories,
evoked and induced. Evoked activity is phase locked
to the onset of a stimulus, and can therefore be seen
by averaging the EEG or MEG signal over many tri-
als. Induced activity, on the other hand, is also mod-
ulated by the presentation of a stimulus, but in this
case it is not phase locked to the onset of the stimulus
such that averaging across trials leads to canceling
of the signal.74 Thus, this type of activity must be
analyzed on a trial-by-trial basis. However, because
it is thought to reflect the entrainment of ongoing
intrinsic brain activity with an external stimulus, it
is of great interest for understanding attention and
the interaction of top–down and bottom–up pro-
cesses. Shahin et al. examined the effects of musical
experience on induced gamma band activity.61 They
found that the presentation of a musical tone pro-
duced waves of increases in gamma band activity
that lasted for at least half a second after stimulus
onset. Furthermore, induced gamma band activity
was greater in adult musicians compared to non-
musicians. Perhaps of most interest, two groups of
4-year-old children, one beginning music lessons
and the other engaged in an equal amount of other
extracurricular activity such as playing sports, were
measured at the onset of lessons and one year later.

Neither group showed any significant gamma band
activity at first measurement. At the second mea-
surement, only the group undergoing musical train-
ing showed significant gamma band activity, such
that the groups did not differ at first measure-
ment, but did differ at the second measurement
(Fig. 5).

In sum, to date oscillatory activity has not
been used extensively in studies of musical de-
velopment. However, it holds much promise as
a technique that can reveal how the brain pro-
cesses music and the effects of development and
experience.

Machine-learning approaches

The predominant approach to EEG and MEG data
analysis is to identify features and components,
study how they are affected by various manipu-
lations, and relate them to processes of interest.
Machine-learning approaches differ in that they are
atheoretical and examine a vast array of data features
simultaneously to determine those that best classify
according to an outcome variable. They have been
used with EEG data, for example, to detect seizure
in infants75 and epileptic adults,76 and to predict re-
sponses of schizophrenic patients to different medi-
cations.77 In terms of development, machine learn-
ing was recently applied to EEG data measured in
response to musical sounds in order to predict the
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Figure 5. Development of induced gamma band activity in 4- to 5-year-old children. Spectral power of gamma band activity at
central channels (C3/C4) and topographies (middle) at the peak amplitude. (A) Initial measurements contrasted with measurements
one year later in nonmusician children (left) and Suzuki pianists (right) in response to piano tones. Only the Suzuki group shows
evidence of gamma-band activity (periodic red signals) after one year of music lessons. (B) Contrasts between the two groups show
that at the initial measurement, the groups do not differ in gamma-band activity (left) but that they do differ after one year of
music lessons (right). The dotted line shows onset of the piano tones. From work by Shahin et al.61 Reprinted with permission from
Elsevier.

age of infants.78 Such techniques show potential for
the study of effects of musical training on brain de-
velopment.

Voxel-based source waveform analysis of
MEG data

As discussed previously, EEG and MEG have the
advantage over fMRI of very fine temporal resolu-
tion that allows the study of oscillatory brain re-
sponses. fMRI remains superior for determining
the locations of activity in the brain, but much
research has been invested to develop better tech-
niques for determining the source locations of
EEG and MEG activity measured at the surface
of the head. As an example, Fujioka et al. have
used a procedure for estimating the time wave-
forms of MEG data in every 5 × 5 × 5 mm
voxel across the brain.79 Briefly, it involves using
synthetic aperture magnetometry, a spatial beam-
forming technique,80 in conjunction with a com-
mon head model derived from MRI data, and ap-
plying this to time domain-averaged MEG wave-
forms.81 Such techniques have successfully localized
activity in auditory and motor cortices69,82 as well as
in deeper sources, including the hippocampus69,83

and amygdala.84

As an example, the beta band data described pre-
viously, in which the presentation of a steady audi-
tory beat-evoked amplitude modulations in beta-
band activity in auditory areas was subject to a

whole-head analysis.69 Interestingly, even though
the stimulus was auditory and there was no move-
ment or suggestion to move, correlated modula-
tion of activity in the beta band was seen across a
wide range of motor-related areas including sensori-
motor cortex, inferior frontal gyrus, supplementary
motor area, and cerebellum.

At present, such techniques have not yet been
applied to questions in musical development, nor
have they yet been developed successfully for EEG
data where activity from different sources is smeared
to a greater extent at the surface of the head. But
it is clear that these techniques are promising for
studies of musical development and the effects of
experience.

Conclusions

Collecting or analyzing developmental EEG and
MEG data is not easy. However, as illustrated by
the few examples from our laboratory in this paper,
EEG and MEG data can contribute substantially to
our understanding of musical development and the
effects of musical training on brain development.
Furthermore, new data analysis techniques exam-
ining oscillatory behavior, classification according
to machine-learning approaches, and voxel-based
source waveform extraction across the whole head
offer great promise for future studies of musical
development.
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