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With Adaptive Windowing
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Abstract—Modified periodogram approaches are nonpara-
metric power spectral density (PSD) estimators. Here, we present
a method for estimating the mean-square error (MSE) of these
PSD estimators. The proposed approach uses the observed data to
estimate not only the PSD but also the associated MSE simulta-
neously. The MSE estimate from the Blackman–Tukey approach
can be utilized for comparison and choice of the optimum window
among a set of smoothing windows of possibly different lengths.
For Bartlett and Welch methods, the MSE estimate can be used
for quality evaluation, and also enables the use of an additional
smooth windowing for these modified periodogram approaches.
The optimum adaptive windowing improves the performance of
these approaches in the MSE sense. Furthermore, the optimally
windowed autocorrelation estimate can be used for extrapolation
with the maximum entropy method (MEM). Our simulation
results confirm that the proposed optimum smooth windowing
approach effectively improves the performance of modified peri-
odogram PSD estimates in the MSE sense.

Index Terms—Correlation, estimation, periodogram, spectral
analysis.

I. INTRODUCTION

S PECTRAL estimation is by now a mature topic, with
applications in non-destructive testing, surveillance, radar

and sonar, direction of arrival estimation, diagnostics, and many
more. There have been many successful inroads to this problem,
including various nonparametric modeling approaches such as
the (modified) periodogram approaches of Bartlett and Welch,
and the smoothing approach of Blackman–Tukey [7], [14],
[15]. The focus of this paper is on improving the performance
of these methods in the mean-square error (MSE) sense.
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There are different design elements in each of these ap-
proaches. For a method with fixed design elements, evaluation
schemes for assessing the performance of power spectral
density (PSD) estimation methods often use autocorrelation
error and/or PSD frequency error. The asymptotic behavior
of these errors as the data length grows, at a particular point
in the autocorrelation estimate or at a particular frequency in
the PSD estimate, has been well studied [6], [14], [15]. Here,
we focus on estimating the MSE of the PSD estimators. This
error, also known as integrated MSE (IMSE) [16], is a valuable
criterion for performance evaluation of the PSD estimators.
In estimation problems, the MSE plays an important role in
evaluating the estimator and much research effort has been
focused on estimating this error for the purpose of estimator
performance assessment [12]. The importance of MSE in PSD
estimation is acknowledged in the recent work concerning
PSD estimation which provides the cepstral thresholding [16].
In this paper, we propose a novel method for estimating the
PSD mean-square error (PMSE) and suggest the use of this
criterion to enhance the performance of perodogram-based
PSD estimators. Note that, due to the basic properties of the
Fourier transform, PMSE in the frequency domain is equal to
autocorrelation mean-square error (AMSE) in the time domain.

We show that the AMSE behavior puts the role of addi-
tional smooth windowing into a new perspective and that this
smoothing can reduce the bias effects due to the leakage in
the modified periodograms. The AMSE of tapered versions of
the modified periodograms can be estimated and compared.
As a result, the tapering window that minimizes the AMSE
can be chosen. This study can provide a rigorous justification
for using lag windows in spectrum estimation and clarify the
ambiguity of the role of this type of PSD tapering [8]. Note
that this type of tapering is different from what is denoted by
multi-tapering in PSD estimation [18]. In the multi-tapering
approaches, the raw data themselves are tapered, whereas here
the estimated autocorrelation is tapered. An existing example of
such tapering is the Blackman–Tukey approach. It is known that
the performance of the basic periodogram method is improved
by the additional smooth windowing in the Blackman–Tukey
approach. Moreover, it has already been acknowledged that the
shape and length of the window affect the estimator variance of
this method. Heuristically, the number of lags for this approach
is recommended to be around 20% of the number of data
samples [10]. However, this window length is not necessarily
the optimum one in many practical applications, and the search
for the optimum window in particular cases is performed by
trial and error [3]. In this paper, we propose a novel method that
first estimates the AMSE of the corresponding spectral esti-
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mator, and then chooses the optimal window, among competing
windows, by minimizing this AMSE estimate. We demonstrate
how the additional smooth windowing can improve Bartlett and
Welch estimates by comparing and minimizing the associated
AMSE. The main contribution of this work is in estimating the
AMSE by using the same finite length data that is used for esti-
mating the PSD itself. In addition, the truncated autocorrelation
estimate which results from the additional smooth windowing
can be used with the maximum entropy method (MEM) [4]
for extrapolation and autocorrelation tail estimation. We have
demonstrated significant performance improvements resulting
from the proposed procedure over that of the classical peri-
odogram approaches, through the use of simulated and real
data.

The organization of the rest of the paper is as follows.
Section II provides the preliminaries and notations that are
used throughout the paper. The effect of smooth windowing in
modified periodogram approaches is discussed in Section III.
In Section IV the role of AMSE in performance evaluation
and in the design of the modified periodograms is discussed.
Section V studies the structure of AMSE and provides a
method of AMSE estimation using only the available data.
Section VI briefly presents the use of MEM for extrapolation
and summarizes the resulting AMSE estimator algorithm for
optimum windowing. Section VII gives the simulation results
and Section VIII contains the concluding remarks.

II. NOTATIONS AND PRELIMINARIES

Consider a wide-sense stationary zero mean random process
with autocorrelation and power density spectrum

:

(1)

(2)

Given a sample of of finite length ,
, we wish to determine an estimate of the autocorrelation and

PSD of .
The modified periodogram approaches are Bartlett method

(averaging periodogram), Welch method (averaging modified
periodogram), and Blackman–Tukey method (periodogram
smoothing) [6], [14]. In this section we set out the related
notations for these methods that are used throughout the paper.

Important Notation: While the true autocorrelation is
a fixed number for each , the estimate of this value using the
observed data is denoted by , which is a sample of random
variable .

A. Common Biased and Unbiased Autocorrelation Estimators

In periodogram approaches the autocorrelation estimates are
provided by averaging autocorrelation estimates of segments
of the available data. These segments of length are denoted
by where each segment starts at :

(3)

For non-overlapped segments and for overlapped seg-
ments . The windowed version of these segments is used
for autocorrelation estimation:

(4)

where , known as time window or temporal window, is of
length . Without loss of generality, we assume that the window
has a unit power1

(5)

We also assume the following condition on the time window

(6)

The final estimate is in the form of

(7)

where the autocorrelation estimate of each segment is denoted
by . The segment estimates for an unbiased estimator,
for and , are in the form of

(8)

and for a biased estimator are in the form of

(9)

The biased estimator provides a much lower error variance,
which is one reason why the biased estimator is preferred.

B. PSD Estimate

The PSD estimate is the Fourier transform of in (7)

(10)

In particular, for the biased estimator in (9), we have

(11)

where is the Fourier transform of in (4).

1In a more general PSD estimation this window can be replaced by a class of
orthonormal tapers of form � ��� [18]. While we keep the notation ����, the
work of this paper can be generalized for these multi-tapering windows.
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III. SMOOTHING WINDOW

The general design elements of the modified and smoothing
periodograms are as follows.

a) Choice of the segment length and the overlapping per-
centage in (3). In the Welch approach the segments can
overlap . However, in the Bartlett method there is
no overlap among the segments .

b) Choice of the time window with length in (4).
In the Blackman–Tukey approach there is no segmentation

and we have . The only design element
in this approach is the smoothing window. In this case, con-
sider a window of length , denoted by
( for all ), which is multiplied by the estimate

(12)

This windowing truncates and shapes the middle part of the au-
tocorrelation estimate. The PSD estimate in this case is

(13)

This PSD estimate is equivalently the convolution of ,
the Fourier transform of , with the PSD estimate of the pe-
riodogram method. The window is known as the smoothing
PSD window or the lag window.

We consider the smooth windowing as a design element for
all the periodogram approaches. Therefore, in addition to the
design parts in a) and b), we have

c) Choice of the smoothing window in (12) with
length among competing windows of possibly dif-
ferent lengths .

IV. EFFECT OF THE SMOOTHING WINDOW ON

MEAN-SQUARE ERROR

The modified periodograms provide an estimate of
samples of the true autocorrelation function, which we can de-
note as a vector , given as

(14)

where denotes the transpose operation. The autocorrelation
estimates without any smooth windowing are in form of

(15)

and the effect of additional smoothing window in (12) sets some
of the values of this estimate to zero and shapes the middle
points to2

(16)

2For simplicity and without loss of generality, we eliminate � and only keep
its length � in this notation.

The AMSE for this estimate is3

AMSE (17)

(where The AMSE is equal to the PMSE in the frequency do-
main due to Parseval’s theorem4:

AMSE (18)

The MSE error is also denoted as IMSE [16].
The averaging periodogram approaches, Bartlett and Welch,

are special cases of the smooth windowing with a uniform
window of length . Traditionally this window is a design
element of the Blackman–Tukey method. Here we use the
smooth windowing with all the periodogram methods including
the averaging periodograms. Due to finiteness of the available
data, the AMSE of the smoothing windowed version of the
averaging periodograms may be less than that of the methods
alone. This is the motivation for calculating AMSE in the
presence of smooth windowing with these approaches. Note
that the Blackman–Tukey method is already a smoothing win-
dowed version of the basic periodogram approach and performs
much better than the periodogram itself in the sense of MSE.
The choice of the optimum window in the Blackman–Tukey
approach has been an ad hoc process, and it is suggested to
choose , the window length, to be around one fifth of the
data length [15].5 We propose to find the optimum window
of the Blackman–Tukey by minimizing the AMSE among
windows of different lengths. To illustrate the effects of the
smooth windowing, we first fix the design items a) and b), the
number of segments and window , and concentrate on the
effects of the smoothing window. We also assume that a class
of possible smoothing windows is available and plan to choose

3Here ��� represents the � -norm of vector �. Note that the complete AMSE
error between the estimate and the true autocorrelation is in form of

AMSE��� � � ���

where the second term is constant for variable smoothing windows and a fixed
�. When comparing the AMSEs with variable�, this extra term can be ignored.

4The PSD mean-square error is

�������

�
	


�
� �	 �
 � 	 �
  ��

�
	


�� 	
� �	 
 �	 


where �	 is the PSD estimate in (13) and 	 is the PSD of the truncated
autocorrelation of length 
� � 	 in (14). The last summation is for discrete
Fourier transform (DFT) at 
� � 	 frequencies, which can also represent the
MSE of the FFT of the autocorrelation.

5In [11], it is recommended that �  ���.
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among these s of different length,6 i.e., of different values
of . The resulting autocorrelation estimate of length

with this smoothing window is in (12). To choose the
optimum window among windows of different lengths, we can
comparethe AMSEs in (17) and find the one that minimizes this
MSE in the time (and, equivalently, in the frequency) domain:

AMSE (19)

A typical performance of AMSE as a function of the window
length is illustrated in Fig. 1. In Fig. 1(a), the desired (true) au-
tocorrelation and the estimated autocorrelation of a signal using
the Bartlett method with a data segment of length
and uniform smoothing is shown. As the figure shows, as
becomes larger than seven, the difference between the desired
and estimated autocorrelation becomes noticeable. Therefore,
we can not trust when with the same confidence
as in when . The logical reason for this behavior
is that the closer we get to the tail of the estimate, the less data is
available to estimate the desired autocorrelation and the estima-
tion error becomes larger. Fig. 1(b) shows the values of AMSE
for different values of . As the figure confirms, the AMSE has
a minimum at . Therefore, it indicates that we can only
trust middle estimates of autocorrelation in order to
have the smallest AMSE. The main challenge in this paper is
estimating the unavailable AMSE by using only the available
finite data.7

V. ESTIMATING AMSE

A. Biased Estimators

The true autocorrelation is related to the expected value of the
autocorrelation estimate as follows:

(20)

where for the biased estimator is8

(21)

6The competing windows can have the same length. However, for notation
simplicity and without loss of generality we represent a window with length �
with � ���.

7Note that our smooth windowing is different from the sharpened peri-
odogram that was introduced in [19]. In that work smoothing is done by the
use of kernel estimates in the frequency domain. In addition, in [19] the PSD
estimates are modeled with an extra assumption about the relationship between
the PSD of the random variable and the true PSD. It assumes that the PSD
estimate at frequency � is in the form of ����� �� �, where ���� itself is a
random variable with particular properties. This assumption helps in providing
an estimate for the AMSE. However, in our work we avoid any of such extra
assumptions on the PSD estimates.

8The condition in (6) guarantees ���� to be nonzero for all �.

Fig. 1. (a) Desired autocorrelation function and Bartlett estimation of autocor-
relation function, (b) AMSE as a function of � (smoothing window length is
�� � �).

and the detail of this calculation is provided in Appendix I-A.
The calculated autocorrelation estimate is used as an estimate
of its expected value:

(22)

The reliability of this estimate depends on the behavior of the
variance of this estimator versus the value of its mean. For ex-
ample if is 3 and its variance is of
order 0.04 (standard deviation (stddev)) of order 0.2), the sample

can be a valid estimate of the true autocorrelation at 2.
However, if the stddev of this random variable is comparable
with its mean, then the one sample of the random variable is
usually not a good estimate of its mean. So the desired evalua-
tion ratio is the autocorrelation quality factor (AQF)

(23)

that should to be as large as possible. Exact calculation of the
variance for a Gaussian process is provided in
Appendix II. As shown in the Appendix, this variance for the
Blackman–Tukey with a biased estimator and a uniform time
window, as a function of and is

(24)

For the unbiased estimator the term in this variance is in-
creased to . This will cause a relatively larger vari-
ance, and consequently smaller AQF, for the unbiased estimator
at large . Hence, the biased estimator is preferred over the un-
biased one.
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B. AMSE Structure and Optimum Window Length

The AMSE in (17) is

AMSE

(25)

where

(26)

and is provided in (21). Details of this calculation are given
in Appendix I. As shown in (24), the variance term
in (25) is a function of and the smoothing window .
Therefore, AMSE is a function of , time windows ,
and smoothing window for a range of values of .

While the first term of AMSE, , is a decreasing function
of , the second term in (25) is an increasing function of as
it is summation of positive values over the range of and .
Therefore, the tradeoff between these terms always results in an
optimum window length .

C. Estimating AMSE Using the Observed Data

From (25), it is evident that in order to estimate the AMSE
we only need an estimate of the autocorrelation . This esti-
mate can be provided by using (22). This will provide an esti-
mate of the first and second terms of the AMSE. The same au-
tocorrelation estimate can be used in estimating the variance in
(24), which is the third term of AMSE. Consequently, the same
data that are used for PSD estimation are also used to estimate
the associated AMSE. We denote this estimate of AMSE as
AMSE

AMSE

(27)

The estimate of the optimum smoothing window length is ob-
tained by minimizing the estimate of AMSE

AMSE (28)

D. AMSE Estimator Behavior

The PSD in (2) is a weighted sum of the autocorrelation
values. Similarly, the AMSE in (25) is a weighted sum
of products of two autocorrelation values. For both PSD and
AMSE the estimates are provided by replacing the autocorrela-
tions with their estimates. Consequently, the validation process
for the AMSE estimate is similar to that for the PSD estimate.
Mean and variance of AMSE estimate for the Blackman-Tukey
approach are provided in Appendix III. The following asymp-
totic behavior of this AMSE estimator proves that the estimator
is consistent:

AMSE AMSE (29)

AMSE (30)

Details are provided in Appendix III.

E. Smooth Windowing and PSD Quality Factor

It is known that the additional averaging or windowing in
modified periodogram approaches reduces the frequency reso-
lution of the periodogram with the advantage of reducing the
frequency variance error. In this case, the following PSD quality
factor [6]:

(31)

is improved by the additional segmentation, averaging, and win-
dowing [14]. The estimate of this quality, as the data length
approaches infinity, is calculated in [14] and [6]. It is illustrated
that the smooth windowing improves the quality factor of the
basic periodogram in the Blackman–Tukey method. With seg-
ments the PSD estimate is [1]

(32)

where is the PSD estimate of each segment. Due to this
relation, the provided expected value and variance of smooth
windowed version of periodogram (in Blackman–Tukey) can be
generalized for the smooth windowed version of the averaging
method9

(33)

(34)

where is the Fourier transform of the smoothing
window. Details of this calculation are shown in Appendix IV.
These values are exactly the expected value and variance for the
Blackman–Tukey with no segmentation. Therefore, the PSD
quality factor of the smooth windowed version of the averaging
periodograms is the same as that of the Blackman–Tukey
approach.

VI. MAXIMUM ENTROPY METHOD FOR

AUTOCORRELATION EXTRAPOLATION

Optimum windowing provides the optimum length of au-
tocorrelation estimates that can be trusted based on the observed
finite length data. However, many signals of interest have au-
tocorrelations that are nonzero for . Therefore, to
achieve the proper frequency resolution of PSD, the tail of the
autocorrelation needs to be estimated. We use the Maximum
Entropy method to extrapolate this tail from the optimally win-
dowed autocorrelation sequence [6]. Given the available win-
dowed autocorrelation, i.e., for lags , the MEM
extrapolates for . Denoting the extrapolated

9“�” denotes the convolution operation
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TABLE I
�����: NUMBER OF SEGMENTS AND LENGTH OF SEGMENTS. � : LENGTH OF THE OPTIMUM SMOOTHING WINDOW THAT MINIMIZES AMSE. �� :

ESTIMATE OF � USING THE ESTIMATE OF AMSE. AMSE���: MSE OF THE APPROACH WITHOUT A SMOOTHING WINDOW. AMSE�� �, AMSE� �� �:
MSE OF THE OPTIMALLY WINDOWED PSDE APPROACH USING AMSE AND AMSE ESTIMATE. AMSE� �� � & MEM:

MSE OF THE EXTRAPOLATED VERSION OF THE OPTIMALLY WINDOWED ESTIMATE

value by , the power spectrum of the extrapolated version
is

(35)

The tail is added to maximize the entropy of the Gaussian
process under the constraint that the is available for

.
The following summarizes the optimum windowing algo-

rithm using the proposed AMSE estimation:

Optimum Windowing Algorithm

1) The autocorrelation of the available finite length data is
calculated with (7).

2) The windowed version of the autocorrelation estimate is
calculated in (12). The AMSE estimate (27) is calculated
for each windowed version of length , , as
it is described in Section V-C by using the same available
finite length data.

3) Among the smoothing windows of length ,
, the one that minimizes the AMSE estimate in (28) is

chosen. The adaptive window with length is a function
of the observed data itself.

4) To recover the truncated tail of the autocorrelation,
the maximum entropy method can be implemented on
the optimum autocorrelation estimate of length ,
and AMSE is estimated for the extrapolated version.
Between the estimate without MEM (from step 4) and
the extrapolated one, the algorithm retains the one with
smaller AMSE estimate.

VII. SIMULATION AND EXPERIMENTAL RESULTS

In the following sections we illustrate the performance of
the proposed method in both simulation and experimental
situations.

A. Simulation Results

Consider a wide-sense stationary (WSS) random process
with the following structure

(36)

where is a unit variance white Gaussian process and is a
filter with real coefficients (‘ ’ denotes the convolution oper-
ator). The true autocorrelation and power density spec-
trum of this random process are

(37)

(38)

To simulate the method, five filter sequences were
generated. The sequence has a single pole that generates an
infinite length autocorrelation and filter is finite length, given
by

(39)

Kaiser filter of length (40)

where is a unit step function. The filters , , and with
the structure of (36) have the following form:

(41)

where the values for , , and are10

(42)

(43)

(44)

while provides a PSD with dominant low frequencies, has
a zero at frequency rad/s, and has a peak at rad/s.
The data length in the following experiments is 1000. Fig. 2
shows the behavior of AMSE as a function of the length of
the smoothing window for and with the Bartlett method.
It also shows the estimate of AMSE using the available data.
The resulting autocorrelation estimate is shown in Fig. 3. As
the figure shows, the optimally windowed autocorrelation esti-
mate suppresses ripples far away from the true autocorrelation
and set them to zero. On the other hand, the extrapolation of
this truncated estimate with MEM provides an improved esti-
mate of the tail closer to the true autocorrelation. Table I shows
the results of using the PSDE methods with AMSE adaptive

10Filter � has two poles at 0.6 and 0.9 and a zero at 0.51; filter � ��� has two
poles at 1/2, two poles at 1/3 and two zeros at � � ���� 	��	

 (on the
unit circle); and filter � ��� has a zero at 0.8 and two poles at ���

�
�� �

�� � ��	 .
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TABLE II
AMSE FOR DIFFERENT PSD ESTIMATION METHODS (AVERAGED OVER 50 TRIALS)

Fig. 2. Bartlett Windowing: AMSE (solid line) and AMSE (dotted line) for
10 segments of � as a function of � (data length N is 1000).

Fig. 3. Autocorrelation of random process � (solid line), Bartlett method
(dashed line), Bartlett optimum windowing �� � �� (dotted line) and
maximum entropy Bartlett optimum windowing (dashed–dotted line).

windowing. For example, in the case of , the periodogram
error (no windowing) is as large as 29.20. Using the smoothing
window of Blackman-Tukey reduces this error, and for the op-
timal window length of the error is as small
as 15. Using our method, the estimate of the optimum window
length is that results in an error of 17. Similar
results for are also shown in the table. As the table shows, the
MEM extrapolation can reduce the amount of the MSE error. To

check whether the MEM improves the PSD estimate, the algo-
rithm compares the AMSE estimates and decides.

Table II Compares the performance of the Blackman-Tukey
with the conventional window length of one fifth of the data
length and the method with optimum window along with the
Multi-tapering method (MTM) [17].11

Fig. 4 shows the PSD estimates for and . As the figures
show, if the purpose of PSD estimation is to provide estimates
at all frequencies that on average are as close as possible to the
true PSD, the proposed method outperforms MTM. The average
MSE errors are smaller for the proposed method (numbers are
provided in Table II). On the other hand, if the goal of the PSD
estimator is to capture the PSD behavior close to zeros, the plot
in decibels shows that the MTM performs better. This happens
at the cost of increasing the MSE of the PSD estimate due to the
large errors at frequencies with high PSD values.

So far we have shown the simulation results for the optimum
windowing algorithm. In the following, the method is used with
a real set of data.

B. Experimental Application in a Classification Problem

We consider a classification problem for a specific subject
age and corresponding state of brain development based on
the electroencephalography (EEG) signal in response to an
auditory stimulus. EEGs were recorded using a HydroCel
GSN (HCGSN) (Electrical Geodesics, Inc., Eugene, OR)
from 128 locations on the scalp. The classification problem
under consideration is the assignment of subjects to one of the
three predetermined age groups, which are 6-month-old and
12-month-old infants and adults. The EEG signals of 68 healthy
subjects, each with length 475, consisting of 29 6-month-olds,
19 12-month-olds, and 20 adults with no known hearing
deficits, were used for the classification. For these types of
classification problems, the wavelet transform of the autocorre-
lation sequences gives improved features for the discrimination
of age group. In particular, the smoothing feature inherent in
the Daubechies wavelet of order 2 made it most suitable for
this application. Since, the total number of wavelet coefficients
(candidate features) is very large, we applied the maximum
mutual information and minimum redundancy criteria to select
the most relevant features [13]. The classifier is trained by using
these features to predict the age group of each subject. Among
different classification methods, the fuzzy c-means (FCM)

11We use the Thomson multi-tapers with seven tapers. (The time-bandwidth
product in MTM method has the suggested default value of 4.) For the available
training data, the estimate becomes smoother if this value is changed through
supervision. However, this type of tuning is not applicable in real application as
the true PSD is not available for comparison purposes.
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TABLE III
COMPARISON OF THE CLASSIFICATION PERFORMANCE IN PREDICTING THE AGE OF SUBJECTS USING DIFFERENT AUTOCORRELATION ESTIMATION METHODS

Fig. 4. PSD estimates of random process � (left) and � (right). The lower figures are the same PSDs in decibels.

classifier is found to provide the optimum performance for
predicting the age group of the subjects [5]. Fig. 5 shows the
estimated autocorrelation for three subjects, selected from three
different age groups, using Bartlett with an optimum window
length. Autocorrelation estimates for the MTM method are also
shown. As the figures show, the optimally windowed autocor-
relation estimates are more discriminative than the multi-taper
ones. Table III compares the prediction performance of the
FCM classifier using three autocorrelation estimation methods.
In this table the parameters that are indicative of the perfor-

mance of the resulting classification structure are computed.12

The table indicates that the three classes of age groups are sepa-
rated more accurately using an optimally windowed estimate of
the autocorrelation in comparison to the case where multi-taper
estimation is used. Note that the optimum length for the 68

12The indicative parameters are defined as follows: Sensitivity: number of
subjects that are identified to be in one class divided by the number of sub-
jects that are actually in that class. Specificity: number of true subjects that are
identified not to be in a particular class divided by the total number of subjects
that are actually not in that class. Total classification accuracy (TCA): number
of correct identifications in all classes divided by the total number of subjects.
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Fig. 5. Estimated autocorrelation of the frontal left part of the brain for three
selected subjects from three age groups using MTM (above) and optimal smooth
windowing methods (below).

signals varies between 9 to 30 which is much smaller than the
conventional window length of Blackman–Tukey, that in this
case is 95.

VIII. CONCLUSION

We proposed a new approach to estimate the unavailable au-
tocorrelation (equivalently PSD) MSE using the observed data
only. It was shown that the bias-variance tradeoff of the auto-
correlation MSE leads to the existence of an optimum window
length that minimizes the MSE amongst a set of smoothing
windows. The MSE estimate was used to choose the optimum
Blackman-Tukey smoothing window. The analysis of the be-
havior of the MSE mean and MSE variance proved the consis-
tency of the MSE estimate for the Blackman–Tukey approach.
Smooth windowing can also be applied to the averaging peri-
odogram (Welch and Bartlett) methods. These methods with the
optimum smoothing window are guaranteed to perform better
than the methods with no additional smooth windowing in the

sense of MSE. It was shown that maximum entropy extrapola-
tion may improve performance in some cases. Whether or not
there has been improvement can be determined by comparing
the respective MSE estimates before and after the extrapolation.

APPENDIX I
STRUCTURE OF AMSE

The AMSE in (17) is

AMSE (45)

(46)

where . By adding and subtracting
an extra term inside the second term we have

AMSE

(47)

On the other hand, the extra term has the following
relationship with the true autocorrelation (see the following sec-
tion, Appendix I-A, for details)

(48)

Therefore, we have

AMSE

(49)

where the last summation term in (49) is zero.

A. Calculation of the Expected Value

From (12) we have

(50)

and from (7) we have

(51)

and due to wide sense stationarity,

(52)
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From (9) and (4), for the biased estimator we have

(53)

(54)

Therefore, this equality can be written in the form of (48) where

(55)

Similarly for the unbiased estimator, we have

(56)
In this case in (48) is

(57)

APPENDIX II
CALCULATION OF

In the following calculation we show how the variance is a
function of the autocorrelation. From (12), we have

(58)

and is

(59)

(60)

where is the covariance terms between the segments,

(61)

and , defined in (8), is the autocorrelation estimate
of segment at point . In order to calculate the desired vari-
ance in (60), it is enough to calculate the covariance between

and . The first term of (60) is the co-
variance when for each segment, , and
the second term is the covariance when and
the segments are different, . The desired covariance is

(62)

The value of the second term is provided in (54) and the first
term is calculated as follows13:

(63)

(64)

(65)

where from (64) to (65) the Gaussian moment factoring theorem
is used [6], and and for the unbiased estimator are

(66)

and for the biased estimator is

(67)

Variance in Blackman-Tukey: In the Blackman Tukey ap-
proach there is only one segment . Therefore, the
cross-terms in (60), , are zero. Also the time window is rect-
angular. Hence, is calculated by setting

and in (63)

(68)

13 This covariance calculation is the modified version of covariance calcula-
tion in [9], where the exact effect of the finiteness of the available data on the
boundaries of the summations is ignored.
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(69)

(70)

From (68) to (69), index is replaced by new index .
On the other hand, using (54) to find we have

(71)

Therefore, the variance of the tapered version Blackman-Tukey
approach is

(72)

(73)

where based on (58), the extra term has the effects of
tapering.

APPENDIX III
MEAN AND VARIANCE OF THE AMSE ESTIMATE IN

BLACKMAN-TUKEY

The AMSE in (25) is a linear combination of and
. It is known that the biased estimate of the auto-

correlation is consistent. We can confirm this fact by checking
the exact behavior of the variance provided in (73):

(74)

Therefore, for the AMSE, (25), we have

AMSE

(75)

and the AMSE estimate in (27) is

AMSE

(76)

Using (70), we have

(77)

(78)

On the other hand, is the variance in (73) when the
autocorrelations are replaced by their estimates:

(79)

and for its expected value we have

(80)

Since is a finite value
for each , in the limit we have

(81)

Therefore, from (81) and (78), we conclude that the limit of the
AMSE estimate in (76) is the same as the limit of AMSE (75)

AMSE AMSE (82)

and the estimator is unbiased in the limit.
Variance of the AMSE Estimate: The structure of the AMSE

estimate in (27) and the structure of the autocorrelation variance
estimate in (79) result in the following AMSE variance:

AMSE

AMSE AMSE

(83)
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Any term of the AMSE variance with and its ex-
pected value is in form of where is a fi-
nite value. This is due to the structure of and its ex-
pected value in (79) and (80). The rest of the terms in the AMSE
variance are in the form of

for a range of . To show that the AMSE vari-
ance in the limit is zero, it is enough to show that these terms
are zero in the limit. Since , it is
enough to show that

(84)

(85)

is zero in the limit. From (70), we have

(86)

For , we have

(87)

(88)

(89)

(90)

(91)

where is such that is a finite
value. Note that from (89) to (90) the Gaussian moments of
order eight is used.14 As a result, in the limit is

(92)

From (92) and (86), we have

AMSE (93)

and consistency of the AMSE estimate is proven.

14For the 8th order moment of a zero mean Gaussian WSS random process,
we have ��� � � �� � � ��� � ���� ������ � �� � � � � � � �

which includes all possible �� �� � � 	
� combinations of products of four
autocorrelations among � up to � .

APPENDIX IV
PSD MEAN AND VARIANCE WITH SMOOTHING WINDOW

By generalizing the expected value and variance of the
Blackman-Tukey in [14], we have

(94)

(95)

(96)

and

(97)

(98)

(99)

as .
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