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Abstract 
Humans process highly dynamic auditory information in real time, and regularities 

in stimuli such as speech and music can aid such processing by allowing sensory 

predictions for upcoming events. Auditory sequences contain information about 

both the identity of sounds (what) and their timing (when they occur). Temporal 

prediction in isochronous sequences is reflected in neural oscillatory power 

modulation in the beta band (∼20 Hz). Specifically, power decreases 

(desynchronization) after tone onset and then increases (resynchronization) to 

reach a maximum around the expected time of the next tone. The current study 

investigates whether the predictability of the pitch of a tone (what) is also reflected 

in beta power modulation. We presented two isochronous auditory oddball 

sequences, each with 20% of tones at a deviant pitch. In one sequence the deviant 

tones occurred regularly every fifth tone (predictably), but in the other sequence 

they occurred pseudorandomly (unpredictably). We recorded the 

electroencephalogram (EEG) while participants listened passively to these 

sequences. The results showed that auditory beta power desynchronization was 

larger prior to a predictable than an unpredictable pitch change. A single-trial 

correlation analysis using linear mixed-effect (LME) models further showed that 

the deeper the pre-deviant beta desynchronization depth, the smaller the event-

related P3a amplitude following the deviant, and this effect only occurred when the 

pitch change was predictable. Given that P3a is associated with attentional 

response to prediction error, larger beta desynchronization depth indicates better 

prediction of an upcoming deviant pitch. Thus, these findings suggest that beta 

oscillations reflect predictions for what in additional to when during dynamic 

auditory information processing. 
 

Keywords: Sensory prediction; Predictive coding; Beta oscillation; P3a; 

Electroencephalogram (EEG); Auditory cortex 
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1 Introduction 
Humans need to process highly dynamic, fleeting incoming sensory information in real 

time, including speech and music. Structural regularities (e.g., beat, meter and pitch patterns in 

music; timing, stress, phonological, syntactic and semantic structure in speech) and the context in 

which sensory events occur allow predictability, which can greatly simplify the problem. Indeed, 

there is considerable evidence that sensory systems extract regularities from perceived external 

events and predictively encode upcoming sensory input, including what (predictive coding) it 

might be and when (predictive timing) it might happen (Arnal & Giraud, 2012; Friston, 2005; 

Heilbron & Chait, 2017; Nobre, Correa, & Coull, 2007; Schröger, Marzecová, & SanMiguel, 

2015; Winkler, Denham, & Nelken, 2009), which facilitates perceptual processing in real time 

(Henry & Obleser, 2012; Henry, Herrmann, & Obleser, 2014; Hickok, Farahbod, & Saberi, 

2015; Rohenkohl, Cravo, Wyart, & Nobre, 2012). Prediction is also essential for anticipatorily 

deploying auditory attention (Large & Jones, 1999; Schroeder & Lakatos, 2009) and 

coordinating motor actions (Chang, Livingstone, Bosnyak, & Trainor, 2017; Kragness & 

Trainor, 2016, 2018; Trainor, Chang, Cairney, & Li, 2018; Warren, Wise, & Warren, 2005). 

Neural oscillatory activities are regarded as essential neural mechanisms for sensory 

prediction. The power of beta band (∼20 Hz) has been shown to reflect predictive timing (Arnal 

& Giraud, 2012; Cirelli et al., 2014; Fujioka, Ross, & Trainor, 2015; Fujioka, Trainor, Large, & 

Ross, 2012; Morillon & Baillet, 2017), but whether it reflects predictive coding 

(the what domain) remains unclear. Previous electroencephalographic (EEG) and 

magnetoencephalographic (MEG) studies show that when listening to an isochronous tone 

sequence, induced (non-phase-locked) beta oscillation in bilateral primary auditory cortices 

desynchronizes following the onset of each tone, resulting in a power decrease, and then 

resynchronizes prior to the onset of the upcoming tone. This power fluctuation is proposed to 

reflect temporal entrainment and temporal prediction because the slope of the resynchronization 

depends on the presentation speed of the isochronous tones (Cirelli et al., 2014; Fujioka et al., 

2012), and because beta power modulation is disrupted in non-rhythmic sequences or by 

occasionally omitted tones (Fujioka et al., 2012, 2009; Snyder & Large, 2005). Outside of a 

rhythmic context, beta power has also been shown to reflect the predictability of a temporal gap 

between tone pairs (Todorovic, Schoffelen, Van Ede, Maris, & De Lange, 2015). Furthermore, 

beyond the traditional view that beta oscillation reflects cortical communication between sensory 

(especially, auditory) and motor regions (Fujioka et al., 2015, 2012; Merchant & Bartolo, 2017; 

Morillon & Baillet, 2017), accumulating evidence shows beta oscillation is associated with 

perceptual performance (Spitzer & Haegens, 2017), including detecting temporal or intensity 

deviations (Arnal, Doelling, & Poeppel, 2015; Herrmann, Henry, Haegens, & Obleser, 2016). 

Together, this suggests beta oscillation is important for forming temporal predictions, and may 

associate with the fidelity of perceptual processing. 

Pitch is a fundamental perceptual feature of sound that is critical for identifying auditory 

objects and understanding speech and music, which are part of the what domain of auditory 

perception. Therefore, it is important to understand how auditory prediction for pitch is 

represented by neural oscillations. 

We hypothesized that beta power modulation in auditory cortex co-represents both 

predictions of spectral frequency (what) and time (when), two essential dimensions of any 

auditory signal, consistent with the following evidence. First, neurons in primary auditory cortex 

are selectively tuned to both spectral and temporal aspects of sound (Boemio, Fromm, Braun, & 

Poeppel, 2005; Fritz, Shamma, Elhilali, & Klein, 2003; King & Nelken, 2009; Lakatos et al., 
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2013; Schönwiesner and Zatorre, 2009). Second, beta oscillation is associated with 

communication between auditory and motor areas (Fujioka et al., 2012), and premotor cortex is 

activated by spectral as well as temporal predictions (Schubotz, 2007). Third, induced beta 

power recorded from human auditory cortex is associated with updating pitch prediction, as beta 

power is modulated by prediction error or prediction updating after the onset of an unpredicted 

sensory event (Chang, Bosnyak, & Trainor, 2016; El Karoui et al., 2015; Sedley et al., 2016). 

However, these studies did not report whether there is an effect of prediction on beta power prior 

to the stimulus onset, and thus it is unclear whether beta power reflects anticipatory sensory 

prediction. The current study aimed to overcome this lack of knowledge by investigating beta 

power prior to a pitch change. 

The P3a component of the event-related potential (ERP) is regarded as an index of 

prediction error, and thus it can be used to access whether an auditory event is successfully 

predicted. When participants passively listen to a sequence of repeated tones with infrequent 

deviants, both mismatch negativity (MMN) and P3a components of the ERP will be evoked by 

those deviants (Polich, 2007; Schröger et al., 2015). Although unpredictability usually covaries 

with rareness in a typical oddball paradigm, these two features can be dissociated and related to 

MMN and P3a differentially. The P3a amplitude reflects the magnitude of prediction error, as it 

is elicited by the unpredictability, but not the rareness, of the deviants (Max, Widmann, 

Schröger, & Sussman, 2015; Sussman, Winkler, & Schröger, 2003). In contrast, the MMN 

amplitude reflects local rareness rather than unpredictability (e.g., Bekinschtein et al., 2009). 

Therefore, we hypothesized that, if beta power modulation in auditory cortex reflects sensory 

prediction, it should attenuate the prediction error response (i.e., P3a amplitude). 

The current study investigated whether beta power modulation, which reflects predictive 

timing, is also modulated by the predictability of an occasional pitch change. We employed two 

isochronous (temporally predictable) auditory oddball sequences with 20% of the tones being at 

a different (deviant) pitch from the standard tones. The deviant pitches were presented every fifth 

tone in one sequence (Predictable sequence), but the deviant and standard pitches were 

pseudorandomly intermixed in the other sequence (Unpredictable sequence). We hypothesized 

that beta power modulation prior to deviant pitch onsets would be modulated by the 

predictability of the pitch change in the sequence. Furthermore, if beta power modulation reflects 

the predictability of pitch changes, a larger beta power modulation (i.e., desynchronization 

depth) should occur prior to the onset of more successfully predicted deviant pitches. Therefore, 

in single-trial analyses using linear mixed-effect (LME) models, larger beta desynchronization 

depth immediately prior to a deviant should be associated with smaller deviant-evoked P3a 

amplitude, a neural response reflecting prediction error (Friston, 2005; Polich, 2007; Schröger 

et al., 2015). 

 

2 Materials and methods 
2.1 Participants 

Seventeen participants were recruited from the McMaster University community, and 14 

of them (18 – 27 years old, mean age 19.9 ± 2.4; 10 female) were used for data analyses 

(see 2.5.3 Artifact rejection for exclusion criterion). Participants were screened by a self-report 

survey to ensure they had normal hearing, were neurologically healthy and were right-handed. 

Signed informed consent was obtained from each participant. The McMaster University 

Research Ethics Board approved all procedures. Participants received course credit or 

reimbursement for completing the study. 
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2.2 Stimuli 
Two recorded piano tones, C4 (262 Hz) and B4 (494 Hz), from the University of Iowa 

Musical Instrument Samples were used, with 10 msec rise times. Tones were truncated to 

200 msec in duration, and a linear decay to zero was applied over the entire excerpt to remove 

offset artifact. The DC shift was removed for each tone. Sounds were converted into a monaural 

stream at 71 dB (C weighted), measured through an artificial ear (type 4152, Brüel & Kjæ r) with 

a sound level meter (type 2270, Brüel & Kjæ r). Sounds were delivered binaurally via ear inserts 

(Etymotic Research ER-2). All stimulus sequences were presented under the control of a digital 

signal processor (Tucker Davis RP2.1). 

2.3 Procedure 
The experiment was conducted in a sound-attenuated room. Each participant was 

presented with a continuous sequence of tones in each of two 30-min experimental sessions, 

while they watched a silent movie on a computer screen. Participants were instructed to sit 

comfortably and remain as still as possible during the experiment while watching a silent movie, 

and they were not required to make any responses, so that we could examine beta responses from 

auditory cortex without possible artifacts from muscle movement. 

The tones were presented in oddball sequences, with the C4 tone as the standard and the 

B4 tone as the deviant. There were two sequence types, Predictable and Unpredictable, such that 

the only difference between them was whether the change from a standard pitch to a deviant 

pitch was predictable or not within the sequence. In the Predictable sequence, each deviant pitch 

was preceded by exactly 4 consecutive standard pitches, and this 5-tone pattern was cyclically 

repeated throughout the entire sequence, making the pitch of each tone in the sequence 

predictable. This manipulation has also been used in previous studies on the predictability of 

pitch changes (e.g., Dürschmid et al., 2016; Max et al., 2015; Schubotz, von Cramon, & 

Lohmann, 2003). In the Unpredictable sequence, the order of the standard and deviant pitches 

was pseudorandomized (with the only constraint being that two deviant pitches could not be 

presented sequentially), which made the pitch of subsequent tones largely unpredictable (only a 

standard immediately following a deviant was predictable, and these trials were excluded from 

analysis). The inter-onset interval (IOI) was fixed at 500 msec in both sequences, and each 

sequence contained 3600 tones, with a deviant occurrence rate of 20% (720 deviant tones). 

Although predictive coding has sometimes been studied in sequences with random IOI, we used 

a fixed IOI here as this reduces variability in beta modulation effects (e.g., Fujioka et al., 2012, 

2009; Snyder & Large, 2005). An equal number of participants completed the Predictable or the 

Unpredictable sequence first. Participants took a three-minute break between experimental 

sessions. 

The analyses on the interval preceding a deviant tone (preDEV trials) aimed to 

investigate whether beta desynchronization (power decrease) is modulated by the predictability 

of an upcoming pitch change. The analyses of deviant trials (DEV trials) examined neural 

responses to the occasional pitch changes. We also examined whether preDEV beta 

desynchronization depth was correlated with DEV trial responses to the pitch change. Only 

standard pitches between two other standard pitches were included in the analyses of standard 

pitches (STD trials), to avoid neural activity associated with deviant pitches (Fig. 1). 
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Fig. 1 The auditory sequences employed in current study. Two isochronous (IOI: 500 msec) tone sequences 

in which 80% of tones are at one pitch (standard F0: 262 Hz) and 20% are at a different pitch (deviant F0: 

494 Hz). The only difference between sequences was that the deviant pitches were presented regularly every 

fifth tone in one sequence, making the pitch change predictable (Predictable condition), but the deviant and 

standard pitches were pseudorandomly intermixed in the other sequence, making the pitch change 

unpredictable (Unpredictable condition). According to their sequential position relative to the deviant pitch, the 

trials were categorized into preDEV (red interval), DEV (blue interval), and STD (green interval). 

Given that we used only one IOI in an isochronous sequence, the current study does not 

fully replicate previous studies showing that beta power reflects predictive timing. Nevertheless, 

the results of analyses on beta power modulation on STD trials (shown in Supplementary 

Materials: S.1) are consistent with previous studies showing beta power entrains to temporal 

regularity reflecting predictive timing (e.g., Fujioka et al., 2012). Here we concentrate on beta 

power analyses related to predictive coding for expected pitches. 

2.4 EEG recording 
The EEG was sampled at 2048 Hz (filtered DC to 417 Hz) using a Biosemi Active Two 

amplifier (Biosemi B.V., Amsterdam). The 128-channel Biosemi pin-type active electrodes (Ag-

AgCl) were placed based on geodesic partitioning of the head surface. The electrode array was 

digitized for each participant (Polhemus Fastrak) prior to recording. EEG data were transformed 

to an average reference offline. 

2.5 Signal processing for source-space neural oscillatory activity 
Three stages of signal processing were conducted in order to examine the behavior of 

auditory induced oscillations in bilateral auditory cortices, following Fujioka et al. 

(2012) and Chang et al. (2016). In the first stage, we obtained a dipole source model based on 

auditory ERP responses. The second stage segmented source waveforms into trials, categorized 

by whether they were STD, preDEV or DEV trials (Fig. 1). In the third stage, trials containing 

excessive artifacts were rejected. 

2.5.1 Stage 1: Modeling auditory dipole sources with P1 component 
We employed a dipole source model as a spatial filter in order to increase the signal-to-

noise ratio of the EEG signal generated from left and right auditory cortices for subsequent 

analyses. In the present study, we were primarily interested in responses from auditory cortex, so 

we analyzed the EEG signals in source-space rather than from surface channels, extracting the 

oscillatory signals generated from left and right auditory cortices while attenuating signals 

generated from other brain regions (Scherg & Von Cramon, 1985). The continuous EEG data 

was band-pass filtered 1–20 Hz and then segmented into time periods −100 to 300 msec, time 

locked to stimulus onset. STD trials on which the amplitude ranged below 150 μV (i.e., low 

artifact) were averaged into ERP waveforms and used to model dipole sources. Two auditory 

cortex sources were estimated for each participant for the auditory evoked P1 (60–

100 msec; Fig. 3) with the dipole locations constrained to be symmetric across hemispheres in 

location but not orientation, using the multiple source probe scan algorithm and the four-shell 

ellipsoid model included in the Brain Electrical Source Analysis (BESA) software package. P1 
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was chosen because it is the dominant peak at fast presentation rates (N1 peaks are strongly 

reduced at fast rates; Näätänen & Picton, 1987), and is generated primarily from primary 

auditory cortex (Godey, Schwartz, De Graaf, Chauvel, & Liegeois-Chauvel, 2001). The mean 

locations of fitted dipoles across participants were at Talairach coordinates [±45.8, −7.7, 17.7] 

with mean orientations [.3, .7, .7] and [−.2, .8, .6] for left and right dipoles, respectively. These 

locations are very close to bilateral primary auditory cortices with orientations toward the mid-

frontal surface area, consistent with typical auditory evoked potentials. The residual variances of 

the source fittings for each participant ranged from 1.4 to 13.3%. 

2.5.2 Stage 2: Trial segmentation 
Based on individual participant dipole model fits, the auditory source waveforms of each 

trial at the left and right auditory cortical sources identified above were extracted for all trial 

types using signal space projection. Trials were segmented from −500 to 1000 msec, time-locked 

to the onset of the tone. Both the individual source waveform trials and raw 128-channel EEG 

data were exported from BESA to MATLAB for further processing. 

2.5.3 Stage 3: Artifact rejection 
For each segmented source waveform, the corresponding 128-channel data was 

examined for artifacts. The segments containing artifacts were eliminated from future analyses. 

The artifact rejection criteria (calculated on surface electrode waveforms) was to eliminate trials 

in which the amplitude range at any channel exceeded 40 μV for more than 10% of the 

1500 msec trial length compared to the baseline mean voltage of the 100 msec prestimulus 

period for all trials. Three participants’ data were excluded because too few trials (36–38%) were 

artifact-free. For the remaining participants (n = 14), 70.0 ± 13.8% (ranging from 50.6 to 90.9%) 

of the trials were accepted for further analyses. 

2.6 Time-frequency decompositions 
In order to remove the evoked (phase-locked) responses from the trial and thereby obtain 

the induced (non-phase-locked) responses for subsequent analyses on beta band, for each trial 

type, the source waveform was averaged as the estimation of the evoked response, and then 

subtracted from each single-trial source waveform (Chang et al., 2016; Fujioka et al., 2012; 

Kalcher & Pfurtscheller, 1995; Mouraux & Iannetti, 2008; Pfurtscheller, 2001; Pfurtscheller & 

Da Silva, 1999). 

Time-frequency decompositions in the beta frequency band were calculated for each 

participant on each unfiltered single-trial source waveform separately in left and right auditory 

cortices using a Morlet wavelet transform (Bertrand, Bohorquez, & Pernier, 1994). The Morlet 

wavelet transformation was calculated on a window centered around each time point for each 

trial with 67 logarithmically-spaced frequency bins between 12 and 35 Hz. The wavelet was 

designed such that the half-maximum width was equal to 2.4 periods of the lowest frequency 

while the width was equal to 3.4 periods of the highest frequency, linearly interpolated for each 

frequency bin in between. Subsequently, 300 msec at the beginning and ending of each 

1500 msec long trial were eliminated to avoid edge effects, the effectiveness of which was 

confirmed by visual inspection. The induced oscillatory power was calculated by averaging the 

power at each time-frequency point across trials. Induced power changes were expressed as a 

relative percentage, by normalizing the power of a trial to the mean power of the 0–500 msec 

time window of the STD trials for each frequency (Chang et al., 2016; Fujioka et al., 2012). For 

the preDEV trials, in order to focus on event-related spectral dynamics in the −500 to 0 msec 

period (time-locked to the deviant pitch onset), the percentage power was baseline corrected to 
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the mean power of each frequency bin in the −700 to −600 msec period on the preDEV trials 

(equivalent to the −200 to −100 msec period time-locked to the preceding standard pitch onset). 

To quantify the amplitude of desynchronization of the mean beta band (15–25 Hz) 

power, we measured the size of the negative peak within the interval −350 to −150 msec, time-

locked to the onset of the deviant pitch. We chose this time window because it is in the middle of 

the 500 msec IOI, and we expected the maximum negative peak occur within this time window. 

2.7 Signal processing for ERPs 
For the analyses on trial-averaged ERP waveforms, the continuous EEG data for each 

electrode was .3–40 Hz band-pass filtered for each participant for each sequence, converted to a 

standard 81-channel montage in BESA, and then segmented into trials covering the time 

period −100 to 500 msec, time locked to stimulus onset, for the DEV and STD trials. We 

averaged across frontal midline (F1, Fz, and F2) and central midline (C1, Cz, and C2) montaged 

channels. The ERP waveform was baseline-corrected by subtracting the mean amplitude of the 

100 msec prestimulus period. 

In the ERP, we focused primarily on analyzing the amplitude of P3a, because previous 

studies have shown that it reflects the magnitude of prediction error (Max et al., 2015; Polich, 

2007; Sussman et al., 2003) or a violation of the global regularity of a tone sequence 

(Bekinschtein et al., 2009; Faugeras et al., 2012). The P3a component is mainly observed over 

central midline (Polich, 2007), so P3a was analyzed at this location. In addition, we also 

analyzed the amplitude of the MMN at frontal midline, because it reflects an automatic 

preconscious response to occasional deviant pitches in a sequence, such as employed in the 

present study (Friedman, Cycowicz, & Gaeta, 2001; Näätänen, Paavilainen, Rinne, & Alho, 

2007). 

In order to accommodate potential individual differences in MMN and P3a latency 

(Conroy & Polich, 2007; Lieder, Daunizeau, Garrido, Friston, & Stephan, 2013), for each 

participant for each sequence, we first calculated the peak latency of the MMN and P3a in the 

difference ERP waveform (mean DEV – mean STD waveforms) in the time ranges 80–130 msec 

and 160–330 msec, respectively. In the second step, we estimated the amplitude of MMN and 

P3a by taking the area under the curve of the window of ±10 msec and ±20 msec, centered 

around the peak latencies of MMN and P3a, respectively. The ERP waveforms are corrected to 

the mean amplitude of the 100 msec prestimulus period. 

The signal processing for extracting single-trial ERP waveforms was the same as the 

above with the following exceptions. First, the continuous EEG data was .3–7.0 Hz band-pass 

filtered, as a lowered cutoff frequency for the low-pass filter can increase the signal-to-noise 

ratio by attenuating the high frequency noise in single-trial ERP analysis (Heinrich et al., 2014; 

Spencer, 2005). Second, to quantify the single-trial ERP amplitude, the ERP difference 

waveform was extracted for each DEV trial by subtracting its preceding preDEV trial, so as to 

give a measure of the response to a deviant pitch relative its preceding context of standard 

pitches. 

2.8 Single-trial correlation between beta desynchronization and P3a 

amplitude 
To examine the trial-by-trial association between beta desynchronization depth on the 

preDEV trials and P3a amplitude on the DEV trials, we performed single-trial analyses using a 

LME model. LME modeling is an extension of linear regression modeling, which accesses the 

influence of predictors of interest (i.e., fixed effects), while taking into account variances across 
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participants (i.e., random effects). In the current study, we were interested in whether P3a 

amplitude can be predicted by beta desynchronization amplitude (continuous variable) and 

sequence type (Predictable or Unpredictable; categorical variable). Both random intercepts and 

random slopes are included in our LME models, because this setup is known to have the best 

generalizability of the LME model (Barr, Levy, Scheepers, & Tily, 2013). Model fitting was 

implemented using the “lme4” package in R (Bates, Mächler, Bolker, & Walker, 2015), and the 

significance of the fixed effects was determined with type-II Wald tests using 

the “Anova” function in the “car” package in R (Fox & Weisberg, 2011). 

2.9 Experimental design and statistical analysis 
Participant (n = 14) was the random factor for the within-subject statistical tests in the 

current study. We employed planned non-parametric tests because the normality assumption was 

violated in many cases. The approximated test statistics (z-value) is reported for each test. The 

statistical tests were performed by MATLAB (2013a) or R (3.3.3). Statistical decisions were 

based on a two-tailed test. 

 

3 Results 
3.1 Predictability of pitch change modulates pre-deviant beta power 

The main goal of this study was to test whether induced beta desynchronization is 

modulated by the predictability of the pitch of the upcoming tone. We analyzed the beta power 

activity across the interval preceding the onset of each deviant pitch (preDEV trials) in both the 

Predictable and Unpredictable sequences (Fig. 2), and we hypothesized that the predictability of 

the deviant pitch would modulate the induced beta power. We quantified the amplitude of 

desynchronization of the mean beta band (15–25 Hz) power by measuring the size of the 

negative peak within the interval of −350 to −150 msec, time-locked to the onset of the deviant 

pitch. In the right auditory cortex, Wilcoxon signed rank tests showed that the desynchronization 

was only significantly lower than 0 in the Predictable sequence (z = −3.23, p < .001), but not 

detectably different from 0 in the Unpredictable sequence (z = −1.66, p = .104). In the left 

auditory cortex, the desynchronization was not significantly different from 0 in either sequence 

(Predictable: z = −1.73, p = .091; Unpredictable: z = −1.79, p = .079). A Wilcoxon signed rank 

test showed that the desynchronization amplitude was more significantly negative in the 

Predictable sequence than the Unpredictable sequence in the right auditory cortex 

(z = −2.17, p = .029). However, there was no difference between Predictable and Unpredictable 

sequences in the left auditory cortex (z = −.28, p = .808). 

We further explored whether the predictability of the pitch has different effects on low-

beta (15–20 Hz) and high-beta (20–25 Hz) bands, as these two sub-bands could have different 

functions (e.g., Kilavik, Zaepffel, Brovelli, MacKay, & Riehle, 2013). However, we did not 

observe any differences between these two sub-bands. The detailed results are reported 

in Supplementary Materials: S.2 and Figure S2. 

In sum, beta desynchronization was only observed prior to a deviant pitch in a 

predictable context but not in an unpredictable context. This is consistent with our hypothesis 

that predictability for what modulates beta power prior to a pitch change. In addition, the right-

lateralization of the effect is consistent with the view that right auditory cortex is more sensitive 

for processing spectral information than is the left hemisphere (e.g., Chang et al., 2016; Zatorre 

et al., 1992, 2002). 
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Fig. 2 Predictability of pitch change modulates pre-deviant beta power. The induced (non-phase-locked) 

oscillatory power was extracted from left (left panel) and right (right panel) auditory cortices using the dipole 

source model. (A and B) Beta (15–25 Hz) power was averaged across trials in each condition for each 

participant and are presented as the mean ± standard error across participants. The time-frequency maps of beta 

power on preDEV trials are shown in Figure S2. (C and D) The minimum beta power (desynchronization 

amplitude) in the −350 to −150 msec time window was extracted for each participant. The grey dots connected 

by a grey line represent the data points of each participant, and the red and blue dots and the error bars 

represent the conditional mean ± standard error. Wilcoxon signed rank tests showed that desynchronization 

was larger in Predictable than Unpredictable sequences in right auditory cortex, but not different in left 

auditory cortex. 

 

3.2 Predictability of pitch change modulates deviant ERP 

amplitudes 
We analyzed whether the deviant pitch evoked larger amplitudes of MMN and P3a ERP 

components in the Unpredictable than in the Predictable sequence (Fig. 3). MMN and P3a 

responses to occasional deviant tones have been well studied using auditory oddball sequences 

such as those in the present study (see Friedman et al., 2001; Polich, 2007 for reviews). 

We first showed that MMN and P3a responses were observed in both sequences, as 

expected in a typical auditory oddball paradigm (Näätänen et al., 2007; Polich, 2007). The 

analyses on the average of frontal midline electrodes using Wilcoxon signed rank tests showed 

that for both sequence types, the amplitudes of MMN (z = −3.30, p < .001 in both sequences) 

and P3a components (z = 3.30, p < .001 in Predictable sequences; z = 2.86, p = .002 in 

Unpredictable sequences), were significantly different from zero in the difference waveforms 

(DEV minus STD trials). Similar results were found for the same analyses on the average of 
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central midline electrodes: the amplitudes of MMN (z = −3.30, p < .001 in both sequences) and 

P3a components (z = 3.30, p < .001 in both sequences) were significantly different from zero in 

the difference waves for both Predictable and Unpredictable sequences. 

 

 
Fig. 3 Predictability of pitch change modulates deviant ERP amplitudes. (A) The ERP waveforms of STD 

(blue) and DEV (red), and the difference waveform (DEV – STD [black]) in Predictable and Unpredictable 

sequences at frontal midline and central midline electrodes. ERP waveforms are presented as the 

mean ± standard error across participants. (B, C, D and E) The amplitude differences (Unpredictable sequence 

minus Predictable sequence) for MMN (left panel) and P3a (right panel), where each circle represents the 

amplitude difference of one participant at frontal midline electrodes (upper panel) and at central midline 

electrodes (lower panel). Wilcoxon signed rank tests showed that only the P3a amplitude in central midline 

electrodes were significantly larger in the Unpredictable sequence than Predictable sequence. (F and G) ERP 

component topographies (grand-averaged across participants), including P1, MMN and P3a for the (F) 

Predictable and (G) Unpredictable sequences. The highest amplitude is presented as red, the lowest amplitude 

is presented as blue, with a symmetrical range around zero (green). 

 

More interesting, we further investigated whether the predictability of the deviants 

modulated subsequent MMN or P3a. At the frontal midline average, Wilcoxon signed rank tests 

did not show any differences in either MMN (z = 1.22, p = .241, Fig. 3B) or P3a (peak-to-peak 

corrected to mean MMN amplitude, z = −.09, p = .952, Fig. 3C) between Predictable and 

Unpredictable sequences. At the central midline average, Wilcoxon signed rank tests did not 
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show a significant difference in MMN amplitude between sequences 

(z = 1.16, p = .268, Fig. 3D). On the other hand, the mean P3a amplitude was larger in the 

Unpredictable sequence than the Predictable sequence (z = 2.10, p = .035, Fig. 3E; if the P3a 

Amplitude Difference outlier [−.61; exceeding 2.28 standard deviations from the mean] was 

excluded, then z = 2.69, p = .005). 

Together, these results suggest that the predictability of a deviant pitch modulates P3a 

amplitude but not MMN amplitude, such that unpredictable deviant pitches (generating a 

prediction error) elicit higher attentional capture compared to predictable deviant pitches, 

replicating previous studies (Max et al., 2015; Polich, 2007; Sussman et al., 2003). The results 

are also consistent with previous findings that MMN is sensitive to local deviance occurrence 

rates (e.g., Bekinschtein et al., 2009; Faugeras et al., 2012); in the current study, local deviance 

occurrence rates were equivalent in the two conditions (20%) and MMN did not differ between 

conditions. 

 

3.3 Pre-deviant beta power is associated with deviant P3a amplitude 
The above analyses, by comparing experimental conditions, showed that the 

predictability of a deviant pitch in a tone sequence context modulates both the pre-deviant 

(preDEV trial) induced beta power activity in the right auditory cortex and the deviant P3a 

amplitude at the central midline average. We thus examined whether these two neural activities 

are correlated at the trial-by-trial level. 

 
Fig. 4 Pre-deviant beta power depth correlates with deviant P3a amplitude when pitch change is 

predictable. We used LME models to examine the trial-by-trial relationship between beta desynchronization 

depth (negative peak) on preDEV trials and P3a amplitude on the following DEV trials. The visualization was 

implemented by the “sjPlot” package in R (Lüdecke, 2016). (A) The best fitted standardized β coefficients 

(fixed-effects only). In the upper panel, “Sequence” indicates differences in the effect of 

Unpredictable versus Predictable sequences on P3a amplitude, “Beta desynch amplitude” indicates the effect 

of beta desynchronization amplitude on P3a amplitude, and “Beta desynch amplitude * Sequence” indicates 

the interaction effect of these two variables on P3a amplitude. In the middle and lower panels, the effect of 

beta desynchronization amplitude on P3a amplitude was analyzed under each of Predictable and Unpredictable 

sequences. The dot and error bar represent the standardized β (fixed-effect coefficient) and 95% confidence 

interval, with * p < .05. (B) The predicted relationship between beta desynchronization amplitude and P3a 

amplitude, under each of Predictable and Unpredictable sequences, based on the LME model. The x and y axes 

are z-scaled for visualization. In sum, the individual trial analyses showed that deeper pre-deviant beta 
desynchronization depth (power decrease) was followed by lower deviant-evoked P3a amplitude in the 

sequence with predictable pitch changes. 



Chang et al., (2018) Cortex                                                                        https://doi.org/10.1016/j.cortex.2018.06.008 

 13 

 

We performed a single-trial analysis with linear mixed effect (LME) models of whether 

the P3a amplitude can be predicted by beta desynchronization amplitude (negative peak), and 

whether this relationship is modulated by Predictable or Unpredictable sequences (Fig. 4A). The 

initial LME model showed a significant interaction effect between beta desynchronization 

amplitude and the type of sequence [standardized β = −.029, standardized 

SE = .013, χ2(1) = 4.56, p = .032]. We thus further analyzed the LME model within each 

Predictable or Unpredictable sequence. The results showed a significant positive relationship 

between beta desynchronization amplitude and P3a amplitude for the Predictable 

sequence [standardized β = .034, standardized SE = .014, χ2(1) = 6.13, p = .013]; however, the 

effect was not significant for the Unpredictable sequence [standardized β = −5.4*10−4, 

standardized SE = .013, χ2(1) = .002, p = .968]. 

Together, the trial-by-trial analyses showed that deeper beta desynchronization depth 

(lower beta power amplitude) preceded trials with smaller deviant-evoked P3a amplitude in 

sequences where pitch changes were predictable (Fig. 4B). Increased post-processing (P3a 

amplitude) is indicative of a failure to predict the pitch change. Thus, greater beta 

desynchronization prior to a pitch deviant appears to enhance the predictability of the upcoming 

pitch deviant, resulting in a smaller prediction error response following the pitch deviant. 

 

4 Discussion 
The current study aimed to investigate whether power modulation of induced beta 

oscillation (15–25 Hz) in auditory cortices reflects spectral in additional to temporal prediction. 

To manipulate the predictability of pitch changes while controlling temporal predictability, we 

employed two isochronous auditory oddball sequences, where both sequences were presented at 

the same presentation speed and the same deviant pitch occurrence rate (20%). The only 

difference was that the deviant pitch occurred regularly every fifth tone in the predictable 

sequence but was pseudorandomly intermixed with standard pitches in the unpredictable 

sequence. 

We report the novel finding that the predictability of a pitch change modulates beta 

power immediately prior to a deviant pitch onset. Specifically, we found that beta 

desynchronization was deeper prior to the onset of a predictable deviant pitch than an 

unpredictable one. Furthermore, a trial-by-trial LME analysis showed that within the predictable 

sequence, the deeper the beta desynchronization prior to a deviant pitch, the smaller the P3a 

amplitude evoked by that deviant pitch. This result indicates that even when the same stimulus is 

presented on different trials, deeper beta desynchronization depth prior to the stimulus is 

associated with better prediction of pitch change. To the best of our knowledge, while previous 

reports indicate that beta oscillations reflect temporal prediction, this is the first report that 

auditory beta modulation depth reflects sensory prediction of what is expected next. 

We demonstrated that P3a amplitude, but not MMN amplitude, was larger in the 

Unpredictable than in the Predictable sequence, consistent with previous findings that 

predictability of a tone sequence modulate deviant-evoked P3a amplitude (Max et al., 2015; 

Sussman et al., 2003). Studies have shown that P3a reflects involuntary attentional capturing, 

elicited by unpredicted deviant stimuli, even when task-irrelevant (Friedman et al., 2001; Polich, 

2007; Rinne, Särkkä, Degerman, Schröger, & Alho, 2006; Schröger et al., 2015, 2000; Sussman 

et al., 2003; Wetzel, Schröger, & Widmann, 2013). For example, ERP studies have shown that 

unpredictable task-irrelevant pitch changes elicit P3a responses, but that such P3a responses are 
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eliminated when the pitch change is predictable, either cued by the regularity of a sequence (e.g., 

every fifth tone) or by a visual cue (Max et al., 2015; Sussman et al., 2003). Also, other studies 

manipulating pitch regularity in tone sequences in global and local hierarchies showed that 

MMN amplitude responds to locally rare pitch and P3 amplitude responds to violations of global 

pitch regularity (e.g., Bekinschtein et al., 2009; Dürschmid et al., 2016; Faugeras et al., 2012). 

It's important to note that these ERP effects might depend on the listening tasks being used in the 

experiment, as the MMN amplitude can reflect the global pitch regularity (predictability) when 

participants are required to attend to the sound (e.g., Wacongne et al., 2011), which is different 

from the passive listening paradigm of the current study. Together, the association between beta 

desynchronization and P3a amplitude found in the current study is consistent with the 

interpretation that deeper beta desynchronization reflects more successful prediction of 

upcoming pitch changes, and thus reduces exogenous drawing of attention toward unpredicted 

events (Friston, 2005; Polich, 2007; Schröger et al., 2015). 

There is a debate as to whether the desynchronization response of beta power modulation 

reflects predictive or a reactive mechanism (Teki & Kononowicz, 2016). The predictive coding 

framework hypothesizes that beta power modulation reflects prediction of the upcoming event 

(Arnal & Giraud, 2012) while the reactive event tagging framework hypothesizes that beta 

oscillation reflects the memory encoding of a perceived salient event (Hanslmayr & Staudigl, 

2014; Teki & Griffiths, 2014, 2016). Previous studies were unable to distinguish these alternative 

hypotheses, given that they used metrically accented tones that occurred cyclically along the 

sequence (Fujioka et al., 2015; Iversen, Repp, & Patel, 2009; Snyder & Large, 2005), and the 

shortest temporal distance between two down-beats was 800 msec, making it even more difficult 

to distinguish whether the beta desynchronization reflected prediction of an upcoming stimulus 

or reaction to the preceding stimulus. We solved the cyclical issue by comparing sequences with 

and without pattern regularity. Under this manipulation, the current study showed that beta 

desynchronization is anticipatorily associated with pitch change only in the predictable context 

but not in the unpredictable context, which supports the idea that beta desynchronization reflects 

predictive coding. However, we do not exclude the possibility that event tagging processes are 

represented as another pattern of activity in beta band. Studies to date suggest that beta 

oscillation can be subdivided into high (>20 Hz) and low (<20 Hz) bands, which might be related 

to different functions (Kilavik et al., 2013; Spitzer & Haegens, 2017). Specifically, novel 

auditory or visual stimuli elicit subsequent activity in the low-beta band (e.g., Chang, Ide, Li, 

Chen, & Li, 2017, Chang et al., 2016; Fujioka, Trainor, Large, & Ross, 2009; Haenschel, 

Baldeweg, Croft, Whittington, & Gruzelier, 2000), and these effects are consistent with the event 

tagging framework. Therefore, we suggest that the desynchronization of the entire beta band 

reflects predictive processes, while the low-beta power increase after an unexpected pitch might 

relate more specifically to an event-tagging process. 

The view that beta oscillation reflects sensory prediction is consistent with predictive 

coding theory, as more salient beta modulation is associated with attenuated P3a amplitude. A 

successfully predicted sensory input elicits smaller subsequent attentional responses, which are 

responsible for propagating error signals in brain networks for further updating sensory 

prediction (Arnal & Giraud, 2012; Friston, 2005, 2009; Heilbron & Chait, 2017; den Ouden, 

Kok, & De Lange, 2012; Hohwy, 2012; Kopell, Whittington, & Kramer, 2011; Schröger et al., 

2015). Also, beta oscillation has been proposed to reflect the cortical representation of 

maintenance or reactivation of the perceived sensorimotor or cognitive state (Engel & Fries, 

2010; Spitzer & Haegens, 2017), which is the basis for predicting upcoming events. A limitation 
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of the current study is that we did not orthogonally manipulate pitch prediction and prediction 

precision (inverse variance of prediction), which are dissociable factors in predictive coding 

theory, and thus we are unable to further distinguish whether beta power modulation reflects one 

or both of these processes. However, a recent study, which recorded local field potentials from 

human auditory cortex while participants listened to sequences with varied pitches, found that 

post-stimulus induced beta power was associated with updating spectral prediction but not 

prediction precision (Sedley et al., 2016). Although this association was only observed in the 

post-stimulus period and not in the pre-stimulus period (Sedley et al., 2016), it favors the 

explanation that the pre-deviant beta power modulation in the current study reflects prediction 

rather than prediction precision. 

It is important to note that the standard and deviant pitches in the current study were 11 

semitones apart. Considering the tonotopic organization of auditory cortex, it is likely that the 

reported beta oscillations were generated by different neuron ensembles tuned to standard or 

deviant pitch (cf., Lakatos et al., 2013). Thus, because the pitch change occurred regularly every 

fifth tone of the Predictable sequence (.4 Hz), an alternative explanation of the beta power 

modulation effect is that the neuron ensemble tuned to the deviant pitch frequency independently 

entrained to the rhythmic inter-deviant interval in the Predictable sequence (.4 Hz). In other 

words, there is a potential confound between timing and pitch expectations, and the beta power 

modulation might reflect predictive timing of deviant tone onsets rather than, or in addition to, 

predictive coding of pitch changes. However, we argue that it is unlikely to be the case. 

Perceptual and sensorimotor evidence shows that rhythm tracking performance becomes 

imprecise for tempos slower than .5 Hz (see Repp, 2005 for a review), and neural oscillatory 

evidence shows that neural entrainment activities cannot be robustly observed for tempos slower 

than 1 Hz (Doelling & Poeppel, 2015). The inter-deviant interval rate (.4 Hz) in the Predictable 

sequence of the current study was slower than these limits, and thus the deviant tempo alone, if 

processed in a separate channel and not nested within the 2 Hz tone sequence, is unlikely to be 

tracked. Therefore, we propose that the neuron ensembles tuned to different pitch frequencies 

might be interconnected and form a predictive coding network in the auditory cortex, and beta 

oscillation might play an important role in this (cf., Wang, 2010). We acknowledge that the 

current evidence is only in favor of the explanation that beta oscillatory power reflects the 

predictability of a pitch change (the what domain), and the current experimental design is 

insufficient to completely rule out the alternative explanations, as the predictability of what and 

when are not fully dissociated. Further electrophysiological evidence is needed to fully test this 

hypothesis. 

The current findings also extend our understanding of the function of beta oscillation in 

sensory processing. First, predictions for both what and when are essential for processing 

dynamic auditory information, and beta oscillation likely plays an important role in these 

processes as it co-represents both prediction types. In particular, prediction is essential for 

auditory stream segregation and chunking the input into hierarchical meaningful segments 

(Wacongne et al., 2011; Winkler et al., 2009), which are required for perceiving speech and 

music (Hickok, 2012; Hickok & Poeppel, 2007; Sridharan, Levitin, Chafe, Berger, & Menon, 

2007) among other sounds. For example, speech must be hierarchically segmented into 

phonemes, words and phrases; music must be segmented into subphrases and phrases. Second, 

sensory predictions reflected by beta power modulation might subsequently be associated with 

improved perception, via top-down controlling of attentional gain (Lee, Whittington, & Kopell, 

2013; Morillon & Baillet, 2017). This is consistent with previous auditory studies showing that 
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prestimulus beta power is higher when participants make correct compared to incorrect 

judgments at detecting temporal deviation (Arnal et al., 2015), detecting intensity deviation in 

tone sequences (Herrmann et al., 2016), detecting distorted pitch in music (Doelling & Poeppel, 

2015), or discriminating frequency and intensity (Kayser, McNair, & Kayser, 2016). Third, the 

current finding of a relation between beta oscillation and sensory prediction can potentially be 

generalized to other sensory modalities. It has been proposed that beta oscillation plays a role in 

updating prediction in micro-scale neural circuits (e.g., Arnal & Giraud, 2012; Wang, 2010), and 

it is possible that such neural circuit exist in other cortical sensory regions. This idea is supported 

by previous studies showing that beta oscillation is associated with predicting tactile stimuli (van 

Ede, Jensen, & Maris, 2010), predicting spatial-temporal properties of the visual stimuli 

(Heideman, Ede, & Nobre, 2017), and motor planning for music performance (Bianco, 

Novembre, Keller, Villringer, & Sammler, 2018). 

Previous studies indicate that the motor system is involved in predicting and perceiving 

temporal (e.g., Chen, Penhune, & Zatorre, 2008, 2006; Fujioka et al., 2012; Grahn, 2012; Grahn 

& Brett, 2007; Grube et al., 2010; Manning & Schutz, 2013; McAuley, Henry, & Tkach, 2012; 

Morillon, Schroeder, & Wyart, 2014; Phillips-Silver & Trainor, 2005; Schubotz, Friederici, & 

von Cramon, 2000; Schubotz & von Cramon, 2001; Teki, Grube, Kumar, & Griffiths, 2011, but 

see; Meijer, te Woerd, & Praamstra, 2016) and spectral (Schubotz, 2007; Schubotz & von 

Cramon, 2002; Schubotz et al., 2003) aspects of auditory sequences. Our finding that beta 

oscillation reflects pitch prediction as well as temporal prediction is consistent with the general 

idea that the sensory prediction process involves interactions between sensory and motor areas 

(Arnal, 2012; Grahn, 2012; Iversen & Balasubramaniam, 2016), given that beta oscillation has 

been suggested to reflect network communication between auditory and motor regions (Bartolo 

& Merchant, 2015; Fujioka et al., 2012; Kilavik et al., 2013; Merchant & Bartolo, 2017; 

Morillon & Baillet, 2017). 

 

5 Conclusions 
The current study shows that oscillatory beta power desynchronization is deeper prior to 

a predictable pitch change than an unpredictable change, indicating that beta power modulation 

reflects predictability for what is expected to happen as well as when it will happen. Our further 

trial-by-trial analysis showed that deeper beta power modulation prior to a pitch change is 

correlated with reduced attention-capturing prediction error responses (P3a amplitude) following 

the pitch change, demonstrating the link between sensory prediction and subsequent attentional 

processes. Together with previous studies, beta-frequency oscillations reflect predictive aspects 

of spectral and temporal processing that are critical for processing dynamic auditory streams, 

such as speech and music. 
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S.1 Induced beta power fluctuates at the stimulus presentation rate 

We analyzed the beta power on the STD trials in the Predictable sequence, where the 

same tone was presented isochronously, similarly as in previous studies (Cirelli et al. 2014; 

Fujioka et al., 2009; 2012; 2015; Iversen et al., 2009). As shown in Figure S1C and D, the beta 

power desynchonization occurred immediately after the tone onset (0 ms time point), and the 

power resynchronized prior to the onset time of the next tone at 500 ms point, consistent with 

previous studies.  

We analyzed the time series of each participant’s normalized mean induced beta power 

via short-time Fourier transforms. For each participant, we took the -200 to 700 ms period of the 

STD trial for the averaged induced beta power (mean power across 15 to 25 Hz) from the 

wavelet transform, zero-padded to 5 seconds in order to increase the frequency resolution to 0.2 

Hz. The amplitude spectrum of the time series of induced beta band power (Figure S1E and F) 

showed the strongest amplitude at 2.0 Hz (the stimulus repetition rate), and Wilcoxon signed 

rank tests confirmed this observation that the mean power at 2.0 Hz was significantly larger than 

the mean power at 1.0, 3.0, 4.0, 5.0 and 6.0 Hz, with all z > 2.60 and p < 0.007. These results 

showed that induced beta band power entrains to the presentation rate (2.0 Hz in the present 

case) of isochronous stimulus sequences.  
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Although the current study cannot demonstrate beta power entrainment (e.g., Cirelli et al. 

2014; Fujioka et al., 2012), due to the lack of variation in stimulus presentation rate and/or use of 

non-isochronous sequences, the beta power fluctuations observed in the current study are 

consistent with the pattern of beta power entrainment found in previous studies. 

 

Figure S1. Beta power entrains to the presentation rhythm of tones. The induced (non-
phase-locked) oscillatory power was extracted from left (left panel) and right (right panel) 
auditory cortices using dipole source modeling. (A and B) The time-frequency maps of induced 
power on STD trials in the Predictable sequence, grand averaged across participants. The onset 
time of standard pitches are at 0 and 500 ms. (C and D) Beta frequency (15-25 Hz) power was 
averaged across trials for each participant and is presented as the mean ± standard error across 
participants. The onset times of standard tones are at 0 and 500 ms. (E and F) The short-time 
Fourier transform for each beta power time series was averaged across trials for each participant. 
The amplitude spectrum is shown as the mean ± standard error across participants. Wilcoxon 
signed rank tests showed that the power at 2.0 Hz (the presentation frequency of the tones) was 
significantly greater than at 1.0, 3.0, 4.0, 5.0 and 6.0 Hz, showing the induced beta power 
entrained to the presentation rhythm of auditory tones. ** p < 0.01; *** p < 0.001.   
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S.2 Predictability of pitch change and pre-deviant low-beta/high-beta power 

 Given the effect of predictability of pitch change on pre-deviant beta power, we further 

explored whether the predictability of pitch change modulates low-beta (15-20 Hz) or high-beta 

(20-25 Hz) power differently (Figure S2), given that these sub-bands might related to different 

functions (Kilavik et al., 2013; Spitzer and Haegens, 2017). We quantified the amplitude of 

desynchronization of the mean low-beta or high-beta power in auditory cortex by measuring the 

size of the negative peak within the interval of -350 to -150 ms, time-locked to the onset of the 

deviant pitch.  

We examined whether the Predictability of pitch change and high/low beta band have an 

interaction effect (Figure S2E and S2F). For each participant, we took the desynchronization 

amplitude difference between Predictable and Unpredictable sequences within low-beta and 

high-beta band. The Wilcoxon signed rank test did not show a significant effect of the 

desynchronization amplitude difference between the low-beta and high-beta bands in left 

auditory cortex (z = -0.91, p = 0.391) or in right auditory cortex (z = 1.41, p = 0.173).  

Together, this exploratory analysis found that the effect of predictability of pitch change 

did not differ significantly between the high and low beta bands, suggesting low-beta and high-

beta oscillatory activities reflect a similar function in current study. 
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Figure S2. Pre-deviant beta power activities in Predictable and Unpredictable sequences. 
(A, B, C and D) The time-frequency maps of induced power on preDEV trials in the Predictable 
and Unpredictable sequences, grand averaged across participants. The onset time of standard 
pitch is at -500 ms, and the onset time of deviant pitch is at 0 ms. (E and F) The minimum beta 
power (desynchronization amplitude) in the -350 to -150 ms time window was extracted for each 
participant for each sequence, and then the difference (Predictable - Unpredictable) was 
estimated for each participant. The grey dots connected by a grey line represent the data points of 
each participant, and the colored dots and the error bars represent the conditional mean ± 
standard error. Wilcoxon signed rank tests did not show any significant effect of high/low beta 
band interacting with Predictable/Unpredictable sequence on the desynchronization amplitude. 
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