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Abstract

Human movements often spontaneously fall into synchrony with auditory and visual environmental rhythms. Related

behavioral studies have shown that motor responses are automatically and unintentionally coupled with external rhythmic

stimuli. However, the neurophysiological processes underlying such motor entrainment remain largely unknown. Here, we

investigated with electroencephalography (EEG) and electromyography (EMG) the modulation of neural and muscular activity

induced by periodic audio and/or visual sequences. The sequences were presented at either 1 or 2 Hz, while participants

maintained constant finger pressure on a force sensor. The results revealed that although there was no change of amplitude

in participants’ EMG in response to the sequences, the synchronization between EMG and EEG recorded over motor areas in

the beta (12–40 Hz) frequency band was dynamically modulated, with maximal coherence occurring about 100 ms before

each stimulus. These modulations in beta EEG–EMG motor coherence were found for the 2-Hz audio–visual sequences,

confirming at a neurophysiological level the enhancement of motor entrainment with multimodal rhythms that fall within

preferred perceptual and movement frequency ranges. Our findings identify beta band cortico-muscular coupling as a

potential underlying mechanism of motor entrainment, further elucidating the nature of the link between sensory and

motor systems in humans.
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Introduction

Human movements spontaneously entrain to auditory and

visual environmental rhythms, aligning in time to the rhythms

in the absence of an individual’s intention to do so (Néda et al.

2000; Tognoli et al. 2007; Burger et al. 2013). Entrainment occurs

with musical rhythms and others’ movements, for instance,

and is critical for successful adaptation to the continuously

changing constraints of everyday environments (Kelso 1995;
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Phillips-Silver et al. 2010). Here, we investigate the neurophysio-

logical processes underlying the occurrence and strength of such

motor entrainment to auditory and visual rhythms.

Neuroimaging studies have revealed that passive listening

to, or observation of, auditory and/or visual rhythms activates

motor areas in addition to sensory areas in the brain (Iacoboni

et al. 1999; Grahn and Brett 2007; Chen et al. 2008), even if no

overt movement is produced. Furthermore, dynamic amplitude

modulations of 20-Hz beta bandneural oscillations that underpin

sensorimotor mechanisms align with the rhythms (Press et al.

2011; Fujioka et al. 2012, 2015). Similarly, the amplitude of beta

band neural oscillations decreases during movement execution

and rebounds when movement ends (Pfurtscheller 1981; Neuper

and Pfurtscheller 2001). Despite growing evidence of the involve-

ment of motor areas during passive listening and observation

of rhythms, including brain network activity mediated through

beta band oscillations, the neurophysiological processes under-

lying the production of motor responses aligned with external

rhythms remain unclear.

This study combined electroencephalography (EEG) and elec-

tromyography (EMG) to better understand the contribution of

beta band oscillations in motor entrainment to auditory and/or

visual rhythms.These techniqueswere used together to examine

the synchronization between beta band oscillations at cortical

and muscular levels and test whether the degree of synchrony is

dynamically modulated during passive rhythm listening and/or

observation. Previous research has revealed that cross-spectral

coherence between primary motor areas (M1) and muscular

activity in the beta band during isometric contraction, which is

taken to be a marker of motor control (Gross et al. 2000; Kilner

et al. 2000; Bourguignon et al. 2017), is modulated by the pre-

sentation of unexpected visual and audio stimuli (Caetano et al.

2007; Hari et al. 2014; Piitulainen et al. 2015). Increased cortico-

muscular coherence occurs a few hundred milliseconds after

such stimulus presentation, suggesting an automatic activation

of the motor system in response to environmental changes (Hari

et al. 2014; Piitulainen et al. 2015).

Here, we investigated whether cortico-muscular beta coher-

ence also changes dynamically in response to stimuli that

repeat periodically and are therefore predictable, with coherence

increasing prior to stimulus onsets as a possible mechanism of

spontaneous motor entrainment. We examined the effects of

unimodal visual and audio rhythmic stimuli as well as bimodal

audio–visual rhythmic stimuli on EEG–EMG beta coherencewhen

participants produced steady index finger flexion. Advantages

of audio rhythms over visual rhythms, especially when discrete,

have been shown in previous sensorimotor synchronization

studies. This auditory advantage has been argued to originate

from superior temporal processing for this modality (Repp 2003;

Hove et al. 2012; Varlet, Marin, Issartel, et al. 2012). Advantages of

bimodal audio–visual rhythms over unimodal rhythms have also

been reported in behavioral studies as integration of information

across sensorymodalities can optimize event timing (Elliott et al.

2010, 2011). This suggests that if dynamicmodulations of cortico-

muscular coherence occur, they might be of greater magnitude

for audio than visual rhythms and for bimodal than unimodal

rhythms.

Visual and auditory stimuli were presented in either 1- or

2-Hz sequences, as the tempo of the rhythms strongly influ-

ences motor entrainment (Richardson et al. 2007; Varlet et al.

2020). Entrainment is superior for rhythms presented close to

an individual’s preferred movement tempo, typically in the 2-

Hz range, which may be related to optimal tempo for locomo-

tion (MacDougall and Moore 2005; Large 2008; Todd and Lee

2015). 2 Hz is not only the preferred tempo for rhythm produc-

tion but also for rhythm perception (Bauer et al. 2015), suggest-

ing that if dynamic modulations of EEG–EMG beta coherence

occur, their amplitude would be greater for 2-Hz than 1-Hz

sequences.

Materials and Methods

Participants

Seventeen participants volunteered to take part in the study

(15 females and 2 males, M=26.75, SD=7.66). All participants

were right handed, had normal hearing, normal or corrected-to-

normal vision, and provided written informed consent prior to

the experiment, which was approved by the Human Research

Ethics Committee at Western Sydney University.

Apparatus

A wide bar load cell (HTC-Sensor TAL201) connected to an

Arduino Duemilanove board (Arduino) via an amplifier shield

(Load Cell/Wheatstone Amplifier Shield, RobotShop) was used to

record the force exerted by right index finger of each participant.

The Arduino board was connected to a MacBook Pro laptop

(Apple) via USB. The load cell was calibrated for linearity and

positioned on a custom support on the right arm of a chair on

which the participant was seated. The chair was positioned in

front of a 22-inch BenQ computer monitor that was used to

display the visual stimuli with a refresh rate of 60 Hz. Audio

stimuli were presented via insert earphones (ER-1, Etymotic

Research).

Stimuli

Sequences of visual and/or audio stimuli at either 1 or 2 Hz

were presented to participants during the experimental trials.

Visual sequences consisted of red dots of 7 cm diameter (≈5◦

visual angle) presented on a black background at the center

of the monitor for 5 frames (i.e., about 83 ms) every 1 s for

1-Hz trials and every 0.5 s for 2-Hz trials (see Fig. 1). Audio

sequences consisted of 500-Hz sine tones presented for 5 frames

(i.e., 83 ms, including 5-ms linear fade in and fade out) every 1 s

for 1-Hz trials and every 0.5 s for 2-Hz trials at a comfortable

listening level that was kept constant across participants (80 dB).

All experimental trials started with 8 control cycles without a

stimulus, followed by 16 cycles with audio and/or visual stimuli,

and ended with 8 control cycles without a stimulus, as shown in

Figure 1. The duration of the cycles was 1 s for 1-Hz trials and

0.5 s for 2-Hz trials. The onset of the audio and visual stimuli

was at the middle of the stimulus cycles (i.e., 0.5 and 0.25 s for

1- and 2-Hz conditions, respectively). The experimental trials

lasted in total 32 s for the 1-Hz condition and 16 s for the 2-Hz

condition.

A letter detection visual task requiring constant vigilancewas

presented to participants on the monitor during experimental

trials to make sure that they remained focused when the stimuli

were presented (Schmidt et al. 2007; Varlet et al. 2017). A fixation

cross was displayed at the center of the monitor throughout

each trial, which alternated with letters, occurring briefly for 5

frames (i.e., about 83 ms) at random time intervals between 6

and 12 s (between 1 and 3 letters occurred in each trial). The

participant was asked to remember the last letter that flashed

on the monitor and say it aloud at the end of the trial under the

monitoring of the experimenter.
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Figure 1. Illustration of the index finger pressure task and audio and/or visual sequences used in the current study.

Procedure

On arrival, an information sheet was given to the participant

before obtaining written consent. The sheet described the task

as a letter detection task with visual, auditory and motor per-

turbations, requiring the participant to maintain a constant fin-

ger pressure while remembering letters that flashed at random

times at the center of the monitor. This cover story was used to

ensure that any modulations to the rhythmic sequences found

in EEG and EMG data were unintended.

Once seated in the chair in front of the monitor, the partic-

ipant was instructed to keep a constant pressure of the right

index finger on the force sensor while keeping her or his fore-

arm as still as possible (see Fig. 1). The participant was given a

practice period before recording three 3-s pre-experimental trials

in which she or he was instructed to produce the maximum

possible pressure. The average of the maximum force in these 3

pre-experimental trials was taken as reference for the following

experimental trials in which visual and/or audio sequences were

presented.

Before each experimental trial, visual feedback based on the

participant’s exerted finger force was displayed at the center of

the monitor to allow the participant to (re)adjust the pressure to

7% of her or his maximum force. The value of 7% was selected in

accordance with previous studies to ensure that the instructed

force was in a range suitable for detecting cortico-muscular

coherence while being maintained with minimal fatigue (Witte

et al. 2007; Hari et al. 2014; Bourguignon et al. 2017). The visual

feedback consisted of a vertical bar that varied in length in real

time depending on the percentage of the instructed force pro-

duced by the participant. The bar was red and turned greenwhen

the exerted force equaled the instructed force ±5%, allowing the

experimenter to start the trial. The participant was instructed

to maintain the instructed pressure throughout the trial while

keeping the eyes fixed on the fixation cross at the center of the

monitor in order to perform the letter detection task (Hari et al.

2014; Piitulainen et al. 2015).

Each participant performed 72 experimental trials in total,

with 12 trials for each of the 6 conditions tested—Modality

(Audio, Visual and Audio–Visual)×Tempo (1 and 2 Hz). Each

participant performed in total 12 blocks of 6 randomly ordered

trials, one for each of the 6 experimental conditions. The

participant was asked to keep the pressure on the force sensor

constant for the entire block with the help of the visual

feedback displayed between trials. The participant was asked

to relax and rest between blocks. The total duration of the

experiment was approximately 90 min, including EEG and EMG

preparation.

EEG and EMG Recording

EEG and EMG signals were recorded at a sampling rate of 2048 Hz

using a BiosemiActive-Two system (Biosemi),which incorporates

hardware low-pass filtering at one fifth of the sampling rate. EEG

was recorded with 64 Ag–AgCl electrodes placed over the scalp of

the participant according to the international 10/20 system. All

electrodes were referenced to the Common Mode Sense (CMS)

and their magnitude was kept below 50 µV. EMG of the flexor

digitorum superficialis (FDS) involved in index finger flexionwas

recorded using a bipolar montage with 2 flat electrodes placed

over the participant’s forearm (Hari et al. 2014; Varlet et al. 2017).

Four additional flat electrodes placed above and below the right

eye and the external corner of the left and right eyes were used

to record ocular movements and eye blinks.

EEG and EMG Analyses

Preprocessing

EEG data were first bandpass filtered using a fourth-order But-

terworth filter with 0.1- and 100-Hz cut-off frequencies, notch

filtered to remove 50-Hz power contamination, and then down-

sampled to 1000 Hz and segmented into 32- and 16-s trials.

Channels containing excessive artifacts or noise were then inter-

polated with the neighboring channels (i.e., an average of one

interpolated electrode per participant and never more than 3).

An independent components analysis (FastICA), as implemented

in Fieldtrip (Oostenveld et al. 2011), was used to remove blink

artifacts and lateralized eye movements. Based on the visual

inspection of the topography and time course, components cor-

responding to the blinks and lateralized eye movement were

removed per participant. EEG data were then re-referenced to the

average of all scalp electrodes.

EMG data were bandpass filtered using a fourth-order Butter-

worth filter with 10- and 195-Hz cut-off frequencies to remove

motion artifacts and noise in line with previous EMG and EEG–

EMG coherence studies (Piitulainen et al. 2015; Bourguignon et al.

2017), notch filtered to remove 50-Hz (and corresponding har-

monics) power contamination, full-wave rectified (i.e., computa-

tion of absolute EMG values), and then down sampled to 1000 Hz

and segmented into 32- and 16-s trials. Full-wave rectification is

often used to examine EMG amplitude and cortico-muscular
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coupling, as it has been suggested to improve the detection

of synchronization between EEG (or MEG) and EMG signals,

although it should be noted that its actual benefit is still

widely debated (Yao et al. 2007; Boonstra and Breakspear

2012; McClelland et al. 2012; Ward et al. 2013; Hari et al. 2014;

Piitulainen et al. 2015).

These 2 EEG and EMG preprocessed datasets were then used

to investigate 1) global amplitude modulations in EEG and EMG

signals, as detailed below in broadband responses, and 2) specific

modulations in the beta frequency band for the synchronization

between EEG and EMG signals (EEG–EMG coherence), as well

as their amplitude using time-frequency analyses, as detailed

below.

Broadband Responses

For broadband responses, EEG signals were further filtered using

a 4th order Butterworth bandpass filter with 0.3- and 30-Hz

cut-off frequencies for visualization in the time domain of EEG

evoked responses. Similar cut-off frequencies have been tra-

ditionally used to remove slow trends and higher-frequency

noise (and fast modulations of small magnitude) to improve

the visualization of EEG evoked responses in previous research

(Jacques and Rossion 2007; Nozaradan et al. 2018; Quek et al.

2018). For broadband responses, the envelope of the preprocessed

EMG signals (i.e., filtered between 10 and 195 Hz and rectified)

was extracted using a Hilbert transform and then lowpass fil-

tered using a fourth-order Butterworth filter with a 5-Hz cut-

off frequency to maximize the sensitivity to slow modulations.

The envelope was used to capture global changes in broadband

EMG signals (Bourguignon et al. 2017; Colon et al. 2017) and

determine whether there was any modulation in participants’

muscular activity induced by the stimulus presentation despite

being instructed to maintain a constant finger pressure.

For the analysis of both EEG (0.3–30-Hz filtered signals) and

EMG (5-Hz lowpass-filtered envelope of the rectified 10–195-Hz

signals) broadband responses, epochs of 1 s for 1-Hz trials and

0.5 s for 2-Hz trials, starting 0.5 s before stimulus onset for 1-

Hz trials and 0.25 s before stimulus onset for 2-Hz trials, were

extracted (see Fig. 1). The 2 first epochs of the 16 stimulus epochs

of each trial were removed to avoid transient responses related

to the onset of the stimulus sequence. The remaining epochs of

all trials in each condition (168 epochs in total, 14 epochs × 12

trials) were then averaged to obtain within-cycle EEG and EMG

broadband responses in the time domain and examine cerebral

and muscular amplitude modulations induced by stimulus pre-

sentation.

Beta Band Responses

For beta band responses, a time-frequency analysis was con-

ducted on preprocessed EEG (0.1-Hz high-pass filtered) and EMG

(10–195-Hz bandpass filtered and rectified) data in Fieldtrip to

compute the power of EEG and EMG signals and the synchro-

nization between the 2 (EEG–EMG coherence). A 250-ms fixed-

length sliding window with 10-ms steps from the beginning to

the end of each trial was used to compute the power between

0 and 48 Hz for all EEG electrodes and the EMG, and the cross-

spectra between each EEG electrode and the EMG, which was

needed to compute the coherence. The fixed-length window size

of 250 ms, resulting in a frequency resolution of 4 Hz (yielding

12 frequency bins for the 0–48-Hz range), was chosen to avoid

overlap between 2 consecutive stimuli and to make it possible

to examine within-cycle beta power and coherence modulations

with sufficient temporal resolution in both 1- and 2-Hz trials. A

multitaper approach, as implemented in Fieldtrip and previous

studies that investigated cortico-muscular coherence, was used

to compute the power and cross-spectra over time (Mitra and

Pesaran 1999; Hari et al. 2014; Piitulainen et al. 2015; Bourguignon

et al. 2017). Three tapers in total were used, resulting in a spectral

smoothing of ±6 Hz. The power and cross-spectra were com-

puted over time from the beginning to the end of each trial,

including the 8 control cycles (no stimuli) before and after the

16 stimulus cycles, for the 12 trials in each condition (see Fig. 1).

Stimulus cycles, as for the epochs, corresponded to 1 s for 1-Hz

trials and 0.5 s for 2-Hz trials, starting 0.5 s before stimulus onset

for 1-Hz trials and 0.25 s before stimulus onset for 2-Hz trials.

The power and cross-spectra computed for the 2 first cycles of

the 16 stimulus cycleswere removed to avoid transient responses

related to the onset of the stimulus sequence. The first cycle of

the first and last 8 control cycles were also removed to avoid

transient responses due to the start of the trial and the stop of

the stimuli, respectively, and to have the same number in total of

stimulus and control cycles.

This procedure resulted in a total of 168 stimulus and 168

control time-frequency epochs (14 epochs × 12 trials) for each

participant, and each modality and tempo condition. For each

epoch (1 s long for 1-Hz trials and 0.5 s-long for 2-Hz trials), there

was a time-frequencymapwith the autospectral density for each

EEG channel and the EMG channel, and a time-frequency map

with the cross-spectral density for each EEG channel (computed

with the EMG channel), both with 12 frequency bins and 100 and

50 time steps for 1- and 2-Hz conditions, respectively. For each

participant, and each modality and tempo condition, the 168

time-frequency epochswere averaged together to obtain for each

EEG channel and the EMG channel an average time-frequency

power map for control cycles (i.e., no stimulus presented) and

for stimulus cycles. For each participant, and each modality and

tempo condition, the 168 time-frequency epochs were used to

obtain for each EEG channel the EEG–EMG coherence at each time

step computed at a frequency f as:

CohEEG−EMG(f) =

∣

∣SEEG−EMG(f)
∣

∣

√

SEEG(f)SEMG(f)
(1)

where SEEG (f ) and SEMG (f ) correspond to the autospectral density

of the EEG and EMG channels, and SEEG–EMG (f ) corresponds to

the cross-spectral density (Bastos and Schoffelen 2016). This

procedure resulted in one time-frequency coherence map with

12 frequency bins and 100 and 50 time steps for 1- and 2-Hz

conditions for each participant and condition (see grand-average

maps in Fig. 6).

To make sure that changes in coherence originated from

actual changes in EEG–EMG synchronization and not artificially

from time-locked powermodulationswith systematic changes in

the phase of EEG and/or EMG induced by stimulus presentation,

EEG–EMG coherence was also calculated on surrogate data (Hari

et al. 2014; Bourguignon et al. 2017). For each participant and

each condition, EMG trials were permuted in such a way that EEG

data were randomly paired with EMG data from another trial. 100

permutations were done in total, resulting in 100 time-frequency

coherence maps that were then averaged to obtain one map for

each participant and condition.

Statistical Analyses

For statistical analyses and data visualization, power and coher-

ence in the beta range were obtained by averaging values from
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12 to 40 Hz. This range was selected to capture the range of

frequencies at which EEG–EMG coherence occurred across all

participants (see Fig. 3 showing variability in the frequency range

in which coherence was observed across participants). Statistical

analyses on EEG–EMG beta coherence were conducted using the

average of the electrodes C1 and C3, consistent with the topogra-

phy of maximal EEG–EMG beta coherence values (see Fig. 3) and

compatible with activity from motor cortical sources, as in pre-

vious studies (Chakarov et al. 2009; Hari et al. 2014; Mehrkanoon

et al. 2014; Bourguignon et al. 2017). The average of the C1 and

C3 electrodes was therefore also used to examine broadband and

beta band amplitudemodulations, assuming amplitudemodula-

tions observed on these 2 electrodes would reflect activity origi-

nating from these same cortical regions.Amplitude in broadband

and beta band was also examined using the average of the FCz

and Fz electrodes and the O1 and O2 electrodes, in line with

the topographies of broadband and beta power responses pre-

sented in Figures 4 and 5, which are assumed to reflect cortical

responses to auditory and visual stimuli, respectively (Jacques

and Rossion 2007; Nozaradan et al. 2018; Quek et al. 2018).

One set of statistical analyses on broadband and beta band

data examined time-averaged responses, and another set exam-

ined dynamic responses. In analyses of time-averaged responses,

broadband and beta band responses were averaged along the

time dimension to test general differences in the amplitude of

EEG, EMG, and EEG–EMG coherence across the different modality

and tempo conditions, including both control cycles (no stimu-

lus presented) and stimulus cycles. The analyses of broadband

and beta band dynamic responses addressed fluctuations in

the amplitude of EEG, EMG, and EEG–EMG coherence over time

within stimulus cycles (i.e., during stimulus presentation) for the

different modality and tempo conditions.

Time-Averaged Responses

For time-averaged responses,broadband and beta band responses

were averaged across the different time steps of the stimulus

cycles and the control cycles to examine global amplitude

differences in the different modality and tempo conditions. For

broadband responses, time-averaged EMG data (i.e., averaged

across the 1000 samples for 1-Hz epochs and 500 samples for

2-Hz epochs) were submitted to a repeated-measures ANOVA

with the factors modality (audio, visual, and audio–visual),

tempo (1 and 2 Hz) and stimulation (control and stimulus).

No statistical analyses were conducted on evoked responses

during stimulus cycles in the broadband EEG data, shown in

Figure 4 and extensively demonstrated in previous research

(e.g., Jacques and Rossion 2007; Nozaradan et al. 2018). For beta

band responses, EMG beta power, EEG beta power, and EEG–

EMG coherence were averaged across the 100 time steps for

1-Hz trials and the 50 time steps for 2-Hz trials of the time-

frequencymaps to obtain time-averaged responses. For EMGbeta

power, time-averaged responses were entered into a repeated-

measures ANOVA with the factors modality (audio, visual and

audio–visual), tempo (1 and 2 Hz), and stimulation (control

and stimulus). For EEG beta power, the factor region (motor

[C1 C3], visual [O1 O2], and auditory [FCz Fz]) was added to the

factors modality, tempo, and stimulation to test for differences

between the different cortical regions. For EEG–EMG coherence,

time-averaged responses for motor areas (average of C1 and

C3) were submitted to a repeated-measures ANOVA with the

factors modality (audio, visual, and audio–visual), tempo (1

and 2 Hz), stimulation (control and stimulus), and permutation

(real and permuted). The permutation factor allowed us to

evaluate whether differences were genuinely attributable to

changes in cortico-muscular coupling rather than to stimulus

conditions inducing changes in EEG and/or EMG phase, which

might artificially lead to higher coherence values.

Dynamic Responses

For dynamic responses, broadband and beta band data were

analyzed over the course of stimulus cycles to test for the

occurrence of dynamically amplitude-modulated broadband,

beta power and beta coherence responses and differences across

the different modality and tempo conditions. One- and two-

Hertz conditions were analyzed separately, as they have different

time steps and potentially different dynamics. The ANOVAswere

conducted on demeaned data and focused only on the effect of

Time or interactions including this factor. Repeated-measures

ANOVAs with the factors modality (audio, visual, and audio–

visual) and time (one hundred 10-ms steps for 1 Hz and fifty

10-ms steps for 2 Hz) were conducted on EMG broadband and

beta power, and EEG–EMG motor coherence for the 1- and 2-Hz

conditions. EMG broadband data were downsampled to 100 Hz

when submitted to this ANOVA. The factor region (motor [C1 C3],

visual [O1 O2], and auditory [FCz Fz]) was added in the ANOVA on

EEG beta power to test for differences between cortical regions

that were expected to occur with the presentation of auditory

and visual stimuli.

To test the occurrence of significant modulations in dynamic

responses over time further, we used cluster-based permutation

analyses (Oostenveld et al. 2011). We ran point-by-point one-

sample t-tests on demeaned data for each of the 6 conditions

to test for significant (negative and positive) deviations from 0.

Then, we determined clusters of adjacent time points above the

critical t-value for a parametric two-sided test and themagnitude

of each cluster by calculating the sum of the absolute t-values

constituting each cluster. We used 1000 random permutations

(random sign changes) of each participant’s dynamic responses

to obtain a reference distribution of maximum cluster mag-

nitude. The proportion of random partitions that resulted in

a larger cluster-level statistic than the observed one (P value)

was calculated. Clusters in observed data were considered as

significant if their magnitude exceeded the threshold of the

95th percentile of the permutation distribution. Cluster-based

permutation analyses entailing point-by-point one-way ANOVAs

with the factor Modality were also used where necessary to com-

pare the magnitude of the deviations between the 3 conditions

separately for each tempo.

ANOVAs and cluster-based permutation analyses were also

conducted on “permuted” coherence data when significant

effects were found on “real” coherence data to confirm that

the effects were genuinely attributable to changes in cortico-

muscular coupling rather than EEG and/or EMG phase changes

induced by stimulus presentation. These analyses were also

conducted on permuted data obtained from a single permutation

rather than the average of 100 permutations, as the formermight

decrease the magnitude of random deviations that could occur.

No statistical analyses were conducted on evoked responses in

broadband EEG data, as these dynamic amplitude modulations

have been demonstrated extensively in previous research (see

Fig. 4, Nozaradan et al. 2018; Quek et al. 2018).

All statistical analyses were conducted using R version

3.4.3 and graphics were generated with the package ggplot2 (R

Core Team 2013; Wickham 2016). Repeated-measures ANOVAs

were performed with the package “afex” version 0.19–1 with

Greenhouse–Geisser correction applied when the assumption
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of sphericity was violated (Singmann et al. 2015). Pairwise

contrasts were used to examine the significant effects further,

with Bonferroni adjustment formultiple comparisons.Data from

one of the 17 participants testedwas not kept for further analyses

because of technical issues during the EEG recording.

Results

The first part of this section presents the results for time-

averaged broadband and beta responses that tested for global

amplitude differences in EEG, EMG and EEG–EMG coherence

across the different modality and tempo conditions, and

stimulus and control cycles. The second part then presents

the results for dynamic broadband and beta responses testing

for amplitude modulations within stimulus cycles (i.e., during

stimulus presentation) in EEG, EMG and EEG–EMG coherence

across the different conditions.

Time-Averaged Responses

EMG Broadband and Beta Power

The ANOVAs on time-averaged EMG broadband and EMG

beta power responses indicated no significant main effects of

Stimulation, (F(1, 15) = 0.95,P=0.35,ηg
2 <0.0001, and F(1, 15) = 0.95,

P=0.35, ηg
2 <0.0001, respectively), of Modality, (F(2, 30) = 1.53,

P=0.24, ηg
2 =0.0005, and F(2, 30) = 1.53, P=0.24, ηg

2 =0.0005,

respectively), of Tempo, (F(1, 15) = 0.01, P=0.93, ηg
2 <0.0001,

and F(1, 15) = 0.01, P=0.93, ηg
2 <0.0001, respectively), or any

significant 2-way or 3-way interactions between these 3 factors

(all P values >0.05). These results suggest that global broadband

and beta amplitude in participants’ EMG did not change

systematically between control cycles and stimulus cycles or

across the different modality and tempo conditions.

EEG Beta Power

The ANOVA on time-averaged EEG beta power revealed signif-

icant main effects of Region, F(2, 30) = 13.04, P=0.002, ηg
2 =0.20,

Stimulation, F(1, 15) = 7.98, P=0.01, ηg
2 =0.001, and significant (or

close to significant) interactions between Tempo and Stimula-

tion, F(1, 15) = 9.90, P=0.0009, ηg
2 =0.007, Region and Stimulation,

F(2, 30) = 4.36, P=0.05, ηg
2 =0.0009, Modality and Stimulation, F(2,

30) = 4.84, P=0.03, ηg
2 =0.001, Tempo, Stimulation and Region,

F(2, 30) = 4.18, P=0.05, ηg
2 =0.0004, and Tempo, Stimulation and

Modality, F(2, 30) = 3.04, P=0.08, ηg
2 =0.0005. As seen in Figure 2,

these results indicate lower EEG beta power in occipital areas

when visual and audio–visual sequences were presented com-

pared to control, but only at 2 Hz. Pairwise comparisons with

Bonferroni correction (18 comparisons in total) yielded signif-

icant differences between control and stimulus for the Visual

region [O1 O2] in the Visual condition, t(183.66) = 5.83, P<0.0001,

d=0.27, and audio–visual condition, t(183.66) = 5.57, P<0.0001,

d=0.25, with 2-Hz sequences. No other pairwise comparisons

were significant (all P values >0.05). The ANOVA did not reveal

any other significant effects (all P values >0.05).

EEG–EMG Beta Coherence

EEG–EMG coherence over motor [C1 C3] regions exhibited

maximal magnitude around 25 Hz, with pronounced variability

between participants within the 10–40 Hz range, as depicted in

Figure 3. The ANOVA on time-averaged EEG–EMG beta motor [C1

C3] coherence averaged within this frequency range indicated a

significant main effect of Permutation, F(1, 15) = 10.35, P=0.006,

ηg
2 =0.21, showing that EEG–EMG coherence over motor areas

was larger in real data than permuted data (see Fig. 3 right

panel). The ANOVA did not yield other significant main effects or

interactions (all P values >0.05), which indicates that the global

magnitude of EEG–EMG beta coherence recorded over motor

areas was not influenced by the stimuli presented and their

modality and tempo.

Dynamic Responses

Broadband EEG and EMG

As seen in Figure 4, no dynamic within-cycle modulation

occurred in broadband EMG in any of the modality and tempo

conditions. The ANOVAs on 1- and 2-Hz broadband EMG

data indicated no effects of Time (F(99, 1485) = 1.17, P=0.13,

ηg
2 =0.02, for 1 Hz, and F(49, 735) = 1.26, P=0.12, ηg

2 =0.02,

for 2 Hz) or interaction between Modality and Time (F(198,

2970) = 0.49, P=0.99, ηg
2 =0.02, for 1 Hz, and F(98, 1470) = 0.64,

P=0.99, ηg
2 =0.03, for 2 Hz). Cluster-based permutation analyses

did not indicate significant deviations from 0 in any of the 6

conditions, further suggesting the absence of systematic within-

cycle modulations in participants’ EMG activity despite the

presentation of audio and visual stimuli. Figure 4 shows that

classical EEG evoked responses were observed following audio

and visual stimulus presentation. No statistical analyses were

conducted on these EEG broadband responses, which showed

clear dynamic amplitude modulations in line with previous

research (Jacques and Rossion 2007; Nozaradan et al. 2018).

EMG Beta Power

The ANOVAs on EMG beta power in 1- and 2-Hz conditions

did not reveal any significant main effect of Time (F(99,

1485) = 0.72, P=0.98, ηg
2 =0.02, for 1 Hz, and F(49, 735) = 4.18,

P=0.05, ηg
2 =0.0004, for 2 Hz), or interaction between Modality

and Time (F(198, 2970) = 0.80, P=0.98, ηg
2 =0.03, for 1 Hz, and

F(98, 1470) = 0.69, P=0.99, ηg
2 =0.03, for 2 Hz). Cluster-based

permutation analyses did not indicate significant deviations

from 0 in any of the 6 conditions. These results indicate that

beta power in participants’ EMG did not exhibit any systematic

within-cycle dynamic modulations in all modality and tempo

conditions, as seen in Figure 5.

EEG Beta Power

The analyses on EEG beta power in 1- and 2-Hz condi-

tions revealed dynamic within-cycle modulations of EEG beta

power in the visual and audio–visual conditions. The ANOVAs

revealed significant time× region×modality interactions for

both 1 Hz, F(396, 5940) = 4.72, P<0.0001, ηg
2 =0.06, and 2 Hz, F(196,

2940) = 4.07, P<0.0001, ηg
2 =0.05. ANOVAs conducted on each

of the modality condition to examine these effects indicated a

significant main effect of time and a time× region interaction

for the visual (F(99, 1485) = 6.36, P<0.0001, ηg
2 =0.18, and F(198,

2970) = 5.80, P<0.0001, ηg
2 =0.15, respectively) and audio–visual

(F(99, 1485) = 6.27, P<0.0001, ηg
2 =0.18, and F(198, 2970) = 5.34,

P<0.0001, ηg
2 =0.15, respectively) conditions for 1-Hz sequences.

Corresponding effects were found for 2-Hz sequences—Visual

(F(49, 735) = 4.90, P<0.0001, ηg
2 =0.14, and F(98, 1470) = 4.47,

P<0.0001, ηg
2 =0.13, respectively); audio–visual (F(49, 735) = 5.20,

P<0.0001, ηg
2 =0.14, and F(98, 1470) = 4.87, P<0.0001, ηg

2 =0.14,

respectively).

Cluster-based permutation analyses also indicated signifi-

cant deviations from 0 in these 4 conditions (see Fig. 5). These
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Cortico-Muscular Entrainment Varlet et al. 7

Figure 2. EEG beta (12–40 Hz) power at electrodes compatible with motor, auditory, and visual cortical regions as a function of the different Modality, Stimulation,

and Tempo conditions averaged across participants. Error bars represent 1×95% CI of the mean computed for within-subject designs (Morey 2008). Topographic plots

correspond to Stimulus—Control contrasts averaged across participants.

Figure 3. EEG–EMG coherence over cortical motor region [C1 C3] for real and permuted data. The left panel represents grand-averaged real coherence, grand-averaged

permuted coherence, and individual real coherence for each participant, for all frequency bins averaged over time and across all conditions. Shaded areas represent

1×95% CI of the mean computed for within-subject designs (Morey 2008). The right panel represents the same individual real and permuted data averaged within the

beta range (12–40 Hz) with the corresponding grand-averaged topographies.

results show the occurrence of dynamicmodulations in EEG beta

power induced by the presentation of visual stimuli that origi-

nated from occipital regions. The ANOVAs on EEG beta power in 1

and 2-Hz audio conditions indicated no significantmain effect of

Time or Time×Region interaction (all P values >0.05), suggesting

that the auditory sequences did not produce dynamic time-

locked modulations of beta power, as seen in Figure 5. These

results were confirmed by cluster-based permutation analyses,
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Figure 4. Demeaned EEG (0.3–30 Hz) and EMG (5-Hz lowpass-filtered envelope of the rectified 10–195-Hz signal) for audio, visual, and audio–visual 1- and 2-Hz conditions

averaged across participants. Shaded areas represent 1× 95% CI of the mean computed for within-subject designs (Morey 2008). Note the scaling difference in the time

axis for the 1- and 2-Hz conditions, corresponding to 1 and 0.5 s, respectively. Grand-averaged topographies are presented, ranging from −1 µV (blue) to 1 µV (red), for

all Modality conditions averaged within 100-ms intervals for 1-Hz conditions and 50-ms intervals for 2-Hz conditions. The vertical dashed line represents the onset of

the audio and/or visual stimulus.

which did not reveal any significant deviation from 0 in these 2

conditions.

EEG–EMG Beta Coherence

Dynamic EEG–EMG coherence responses recorded over motor

areas [C1 C3] for the different tempo andmodality conditions are

presented in Figure 5 for averaged values within the beta range

(12–40 Hz), and in Figure 6 for all frequencies. The ANOVAs on

EEG–EMG beta motor coherence in 1- and 2-Hz conditions indi-

cated dynamic within-cycle modulations for the 2-Hz tempo but

not the 1-Hz tempo. The ANOVA on 1-Hz motor coherence data

indicated no significant main effect of Time, F(99, 1485) = 0.92,

P=0.69, ηg
2 =0.02, or interaction between Time and Modality,

F(198, 2970) = 0.49, P=0.99, ηg
2 =0.02. The ANOVA on 2-Hz motor

coherence data yielded a significant main effect of time, F(49,

735) = 3.43,P<0.0001, ηg
2 =0.07, and a near-significant interaction

between time and modality, F(98, 1470) = 1.23, P=0.07, ηg
2 =0.05.

ANOVAs on each of the 3 modality conditions for 2-Hz data

revealed a significant main effect of time for audio–visual, F(49,

735) = 4.73, P <0.0001, ηg
2 =0.24, but not for audio, F(49, 735) = 0.91,

P =0.66, ηg
2 =0.06, or visual, F(49, 735) = 0.22, P =0.99, ηg

2 =0.01.

These results were confirmed by cluster-based permutation

analyses conducted on each of the 6 conditions that indicated

significant clusters only for the audio–visual 2-Hz condition (see

Fig. 5). The cluster-based permutation analyses and ANOVAs

on permuted 2-Hz data in the audio–visual condition indicated

no significant clusters and main effect of time, F(49, 735) = 0.41,

P =0.99, ηg
2 =0.03 for permuted data with 100 permutation and

F(49, 735) = 0.61, P =0.98, ηg
2 =0.01 for permuted data with 1

permutation. This confirms that the dynamic modulation of

EEG–EMG motor coherence in this condition is attributable to

a genuine increase in cortico-muscular coupling rather than

systematic changes in the phase of EEG and/or EMG induced by

stimulus presentation artificially inflating coherence values.

Furthermore, it can be noted that the increase of EEG–EMG

coherence was maximal about 100 ms before the presentation

of the stimulus, in contrast to the increase of EEG beta power

that was maximal after the stimulus, and that this increase in

EEG–EMG coherence was maximal over motor areas as shown

on the grand-averaged topographies in Figure 5. A cluster-

based permutation analysis that compared the amplitude of

the modulations in the 3 conditions at 2 Hz did not indicate

significant clusters. Direct evidence of larger modulation in the

bimodal condition than the unimodal conditions is therefore

lacking, even though only the bimodal condition displayed

significant modulation over time.

Discussion

This study investigated concurrent EEG and EMG responses of

participants passively listening to sequences of auditory tones

and/or observing sequences of visual flashes during isometric

muscular contraction. The results revealed that the presentation

of the sequences not only resulted in evoked brain responses to

the visual and auditory inputs, but also in dynamic modulations

of beta band coherence between EEG and EMG recorded from

the finger. This cortico-muscular coupling might underlie motor

entrainment to environmental rhythms.

Our EEG data indicated the occurrence of evoked responses a

fewhundredmilliseconds after the presentation of periodic audi-

tory and/or visual stimuli for both 1- and 2-Hz conditions, in line
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Figure 5. Demeaned EEG power, EMG power, and EEG–EMG motor [C1 C3] coherence in the beta (12–40 Hz) frequency range for the different tempo and modality

conditions. Shaded areas represent 1×95% CI of the mean computed for within-subject designs (Morey 2008). Note the scaling difference in the time axis for the 1- and

2-Hz conditions, corresponding to 1 and 0.5 s, respectively. Grand-averaged topographies are presented for all Modality conditions between −0.15 (blue) and 0.15 (red)

for EEG beta power and −0.015 (blue) and 0.015 (red) for EEG–EMG beta motor coherence averaged within 100-ms intervals for 1-Hz conditions and 50-ms intervals for

2-Hz conditions. The horizontal color lines represent the significant clusters and the vertical dashed line represents the onset of the audio and/or visual stimulus.

with previous research (Jacques and Rossion 2007; Nozaradan

et al. 2018; Quek et al. 2018). These responses were accompa-

nied by amplitude modulations in the beta frequency band for

visual and visual–auditory stimuli but not for auditory stim-

uli. In both conditions, these modulations appeared to be of

larger magnitude in occipital regions, suggesting modulations in

visual activity. Although EEG beta modulations with audio stim-

uli have recently been reported (Chang et al. 2018, 2019), there

is evidence that the cortical tracking of audio signals is more

readily observed with MEG than EEG under some circumstances

(Destoky et al. 2019), which may partially explain our result.

We also did not find dynamic changes in participant’s index

finger related EMG activity across all frequencies and in the beta

frequency band in particular. Nevertheless, the results revealed

that the synchronization of beta band oscillations betweenmus-

cular activity and EEG activity recorded at electrodes over cortical
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Figure 6. EEG–EMG motor [C1 C3] coherence for all frequencies as a function of the different tempo and modality conditions averaged across all participants. Note the

scaling difference in the time axis for the 1- and 2-Hz conditions, corresponding to 1 and 0.5 s, respectively. The vertical black line represents the onset of the audio

and/or visual stimulus.

motor regions was dynamically modulated when audio–visual

rhythms were presented. This EEG–EMG coherence increased

prior to stimulus onsets, in contrast to EEG evoked sensory

responses occurring after stimulus onsets.

This finding extends previous research by showing that

dynamicmodulations in cortico-muscular coherence do not only

occur following an unexpected stimulus (Piitulainen et al. 2015)

but also persist with periodic stimuli, highlighting the potential

role of these modulations in neurophysiological processes

underlying motor entrainment to environmental rhythms. The

observed dynamicmodulations of EEG–EMG beta coherencewere

tempo and modality specific. The modulations were found for

2-Hz sequences, but not for 1-Hz sequences, when both auditory

and visual stimuli were presented together. This result is in line

with the hypothesis that audio–visual 2-Hz rhythmswould result

in the strongest entrainment. It has been previously reported

that 2 Hz is the preferred tempo for rhythm production and

perception, and it has been speculated that this may be due

to biomechanical properties of human locomotion (MacDougall

and Moore 2005; Large 2008; Todd and Lee 2015; Bouvet, Varlet,

Dalla Bella, Keller, Bardy 2019, Bouvet, Varlet, Dalla Bella, Keller,

Zelic, et al. 2019). It can be noted also that only 2-Hz stimuli

resulted in overall beta power decreases in EEG compared

to when no stimuli were presented in control cycles, which

might also reflect the stronger influence of this particular

tempo on brain activity. Benefits of audio–visual stimuli over

unimodal stimuli are also in accordance with results previously

reported in multisensory integration literature, including in the

context of movement synchronization where timing processing

improves with the availability of cues from more than one

modality (Stein and Meredith 1993; Elliott et al. 2010, 2011;

Eaves et al. 2019). It will remain nevertheless necessary to

confirm this bimodal advantage in future studies, as cluster-

based permutation testing that directly compared the amplitude

of the dynamic modulations in the 3 conditions at 2 Hz did not

indicate significant differences, even though only the bimodal

condition showed a significant modulation over time.

Furthermore, previous research has shown that human

movements can entrain to rhythms that are unimodal and have

tempi slower than 2 Hz (Richardson et al. 2007; Lopresti-Good-

man et al. 2008; Burger et al. 2018; Varlet, Williams, and Keller

2020), suggesting that dynamic modulations of EEG–EMG beta

coherence might be expected to occur in these conditions under

some circumstances. The sequences of simple pure sine tones

and/or visual flashes used in the current study might not have

favored the occurrence of motor entrainment under unimodal

conditions and at the relatively slow 1-Hz tempo. Musical

properties of auditory rhythms such as the saliency of the beat

or the degree of syncopation, as well as simple properties such

as the pitch of the sounds, are known to modulate the strength

of motor entrainment (Burger et al. 2013, 2018; Stupacher et al.

2013; Etani et al. 2018; Lenc et al. 2018). Enhanced movement

entrainment and EEG tracking of auditory rhythms have been

found with low-pitch sounds (Hove et al. 2014; Lenc et al.

2018; Varlet et al. 2020), suggesting that using lower-pitched

sounds could have resulted in larger effects on EEG–EMG beta

coherence. Visual rhythms are also not all equal in producing

spontaneous movement entrainment. Properties such as their

continuity, amplitude, and movement velocity profile modulate

the occurrence and strength of visuomotor entrainment (Varlet,

Coey, et al. 2012; Varlet et al. 2014; Zelic et al. 2016, 2018). The

biological naturalness of visual rhythms can also play a key role,

with both human-like kinematics and appearance facilitating

entrainment (Kilner et al. 2003; Press et al. 2011). Therefore,

the specific properties used in the current study (i.e., discrete

500-Hz pure sine tones and flashing dots) might not have

been conducive to motor entrainment, especially in unimodal

and 1-Hz conditions. To address this, future studies could test

the effects of other types of visual and auditory rhythms to

further understand the range of stimuli and tempi that produce

spontaneous changes in beta band cortico-muscular coupling.

The dynamic modulation of EEG–EMG beta coherence was

characterized by an increase in coherence about 100 ms before

the occurrence of each audio–visual stimulus. This temporal

profile seems to suggest an anticipatory motor response that, if

participants were free to move, could support the production of

overt movement synchronized with the stimulus. The observed

profile might also reflect the involvement of motor related areas

in rhythm perception, where anticipatory amplitude modula-

tions of beta band neural oscillations have been observed using

MEG (Press et al. 2011; Fujioka et al. 2012, 2015; Large et al. 2015;

Morillon and Baillet 2017). Motor related areas are involved in
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supporting the prediction of upcoming events during rhythm

perception and the increase of coherence in beta band neu-

ral oscillations between EEG and EMG activities might capture

these mechanisms. However, an alternative explanation could

be that the increase of EEG–EMG coherence before the stimulus

might actually be a response to the previous stimulus in the

sequence. Even if such a response is not an anticipatory response,

it could still support the production of overt movement syn-

chronized with the stimulus. To disentangle these 2 hypotheses

and confirm the anticipatory nature of such EEG–EMG coherence

increases, it would be important in future studies to manipulate

the interstimulus intervals (i.e., the tempo) around 0.5 s to exam-

ine whether the anticipation remains constant independently of

these manipulations (Fujioka et al. 2012; Merchant et al. 2015).

The link between the EEG–EMG coherence response and actual

movement production might also be investigated in future stud-

ies by comparing the dynamics of EEG–EMG beta coherencemod-

ulations and the movements actually produced by participants

when they are free to move, such as tapping a finger at their

preferred tempo (Repp 2005). The strength of the entrainment in

EEG–EMG coherence and actual movements could be compared

across experimental conditions and participants to confirm the

link between the 2, with larger EEG–EMG coherence modulations

correlating with stronger movement entrainment taken as evi-

dence for a functional association.

More generally, as EEG–EMG coherence might capture the

neurophysiological processes underlying motor entrainment,

this measure could be of particular interest in a range of applied

research fields (Kelso 1995; Phillips-Silver et al. 2010; Kugler

and Turvey 2015). EEG–EMG coherence could help to better

understand how humans respond to continuously changing

environmental constraints in real-world contexts. Producing or

dancing with music, for instance, requires the adaption to and

anticipation of complex auditory and visual rhythms (Phillip-

s-Silver and Keller 2012; MacRitchie et al. 2017). Furthermore,

one needs to continuously adapt movements across different

time scales and body segments. EEG–EMG coherence could help

in future research to better understand the neurophysiological

processes supporting the production of such complex rhythmic

patterns (Mima and Hallett 1999; Grosse et al. 2002; Boonstra

2013). EEG–EMG coherence might also be fruitful in probing

the processes underlying abnormal movement entrainment.

Indeed, abnormal movement entrainment to environmental

rhythms has been reported with a wide range of pathologies,

from neurological to social disorders (Varlet, Marin, Raffard, et al.

2012; Del-Monte et al. 2013; Hove and Keller 2015). EEG–EMG

coherence could provide neuromarkers that could ultimately

help to offer individualized interventions based on objective

neurophysiological criteria.

It is important to note that EEG–EMG coherence measures

can also have limitations (Bastos and Schoffelen 2016). In the

current study, the main limitation is that changes in EEG–EMG

coherence were only captured if they were time-locked across

stimulus cycles and trials. This is often the case with coherence,

as it requires a large number of trials to be accurately calculated.

It is nevertheless possible that other less systematic changes

in cortico-muscular connectivity might have occurred and been

influenced by the different sequences presented. Future studies

should therefore explore other measures of connectivity to fur-

ther understanding of the dynamic changes in cortico-muscular

coupling induced by environmental rhythms.

To conclude, the current study demonstrates that the coher-

ence between activity in cortical motor areas and muscular

activity in the beta frequency band is dynamically modulated

during the passive listening and observation of environmental

rhythms. Despite a lack of changes in EMG amplitude and the

occurrence of EEG evoked responses after stimulus onsets, EEG–

EMG coherence increases prior to stimulus onsets. The observed

dynamic modulations in beta band cortico-muscular coupling

induced by periodic and predictable stimuli provide a potential

mechanism for motor entrainment. Dynamic EEG–EMG coher-

ence modulations occurred particularly when visual and audio

sequences were presented together at 2 Hz, confirming at a neu-

rophysiological level the enhancement of motor entrainment to

rhythms that aremultimodal and close in tempo to the preferred

frequency of humanmovement. These findings demonstrate the

potential of EEG–EMG coherence as a measure for furthering

the understanding of the neural mechanisms in motor related

brain areas supporting rhythm perception and production in

humans.
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