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Abstract

Rhythms are important for understanding coordinated behaviours in ecological systems. The repetitive 

nature of rhythms affords prediction, planning of movements, and coordination of processes within and 

between individuals. A major challenge is to understand complex forms of coordination when they 

differ from complete synchronization. By expressing phase as ratio of a cycle, we adapted levels of the 

Farey tree as a metric of complexity mapped to the range between in-phase and anti-phase 

synchronization. In a bimanual tapping task, this revealed an increase of variability with ratio 

complexity, a range of hidden and unstable yet measurable modes, and a rank-frequency scaling law 

across these modes. We use the phase-attractive circle map to propose an interpretation of these 

findings in terms of hierarchical cross-frequency coupling (CFC). We also consider the tendency for 

small-integer attractors in the single-hand repeated tapping of 3-interval rhythms reported in the 

literature. The phase-attractive circle map has wider basins of attractions for such ratios. This work 

motivates the question of whether CFC intrinsic to neural dynamics implements low-level priors for 

timing and coordination and thus becomes involved in phenomena as diverse as attractor states in 

bimanual coordination and the cross-cultural tendency for musical rhythms to have simple interval 

ratios.

Keywords: coordination, cross-frequency coupling, Farey tree, intrinsic dynamics, rhythm, scaling law
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Cross-frequency coupling explains the preference for simple ratios in rhythmic behaviour and 

the relative stability across non-synchronous patterns

1. Introduction

Rhythms are ubiquitous in biological systems, likely because their repetitive nature enables 

anticipation and prediction. A major challenge is how to coordinate between different rhythms both 

within an individual or between individuals. The ecological importance of coordination is revealed by 

the fact that either synchronous or asynchronous chorusing among conspecifics can result from the 

relative contribution of cooperative and competitive constraints [1,2]. In research, the range of 

coordination considered is restricted oftentimes to the extreme limits of complete synchrony 

(coincidence of periodic events) or a total lack of synchrony (random). Yet, there are also forms of 

interaction in chorusing animals consisting of simple ratios or even patterns that are non-isochronous 

yet coordinated [3]. Rhythms are also central to human action and human auditory-based 

communication systems, namely music and language. Within individuals, coordination of rhythms is 

also essential. In the action domain, it is necessary to coordinate rhythmic movements across effectors 

in order to locomote. Such behaviour has been studied extensively using bimanual coordination. 

Typically, only two points of stability are considered: in-phase (synchronous, 0° phase) and anti-phase 

(180° phase). The latter can be thought of as encompassing a 1:2 ratio between the cycle duration (tap 

to tap period within a hand) and the duration between all taps from both hands. We are interested in the 

grey area in between these two stable modes because there have been fewer comprehensive attempts to 

quantify the stability of actions across a range of possible phases and identify possible attractor states.

Here we use a theoretically motivated measure of ratio (or phase) complexity with the hypothesis 

that complexity will be negatively associated with the stability of bimanual tapping beyond the classic 

two cases. We explore whether a cross-frequency coupled (CFC) oscillator model can capture these 

complexity constraints. We then generalize the modelling approach by applying it to a different task; 

when asked to synchronize with one hand to a repeating three-interval rhythm, people’s tapping 

behaviour is attracted to rhythms where the three intervals stand in small integer relations [4].

In the auditory domain, the importance of small integer ratios has been recognized across diverse 

domains from the role of harmonic relations in pitch, consonance/dissonance, harmony perception, 

[5,6] to beat perception [7] and the prevalence around the world of rhythms with small-integer ratios 

[4]. Musical rhythmic behaviour in humans is a natural domain for observing refined complex forms of 

coordination and perception that are neither random nor coincidence synchrony. A large class of 
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rhythms exhibits nesting, subdivision, and a discrete set of inter-beat intervals that are related as simple 

integer ratios such as 1:3 and are associated with perceptual and coordination benefits [8,9]. Speech 

also exhibits a rhythm-like hierarchical organization of temporally coordinated prosodic units [10], 

although with a higher variance or noise than in the typical musical case. 

Despite the ubiquity of simple ratios in musical rhythms, a theoretically motivated metric of 

complexity has yet to be directly applied and a number of questions remain. For example, setting 

participants’ tapping on various initial rhythmic patterns and then allowing their intervals to evolve 

freely over successive iterations has consistently revealed two contrasting results: indeed, there is a 

tendency towards simple integer ratios but it is not perfect and there appear to be additional factors that 

bias the attractive states in one way or another [11,12]. Taking this task to different human populations 

with different musical traditions has shown that not all simple ratios are represented equally and that, 

while there are common tendencies, culture-specific rhythmic priors can also be identified [4]. 

Additionally, developmental work shows that young infants easily encode rhythms containing various 

ratios, but by one year of age their perception has narrowed to become better at those ratios in their 

environment and worse at those ratios not in their environment [13–15].

We defined complexity as the level of the Farey tree on which a given ratio is found1, see Figure 

1c. This is the definition used typically for the complexity of multifrequency coordination patterns. 

Multifrequency synchronization tasks such as tapping, limb oscillation, or gait-breathing coordination 

consistently show that low integer ratios are easier to learn and perform [16–19], and may even confer 

stronger neural entrainment as measured by EEG, at least when tested over a very small set of rhythms 

[20]. A minimal mathematical model of cross-frequency coupling known as the circle map suggests 

that the benefit of simple ratios is that oscillators with such frequencies synchronize more easily 

[17,18]. What is novel here is that by expressing phase as a ratio we can apply the same ideas to a 

wider range of coordination tasks.

The Farey sequence of order N is the set of all fractions in lowest terms between 0 and 1 whose 

denominators do not exceed N. For example, the Farey sequence of order 3 is {0/1, 1/3, 1/2, 2/3, 1/1}. 

The Stern-Brocot tree is a mathematical graph in which the vertices correspond uniquely to all the 

positive rational numbers expressed in their lowest terms. Often referred to as Farey tree, the Stern-

1 An alternative, yet closely, related definition is possible in terms of the Farey sequence rather than the 

tree (see Supplementary Table 1), in which case the level corresponds to the ratio denominator.
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Brocot can be limited between zero and one in which case it contains all the Farey sequences. It applies 

a rule to the fractions from one level to obtain the fractions of the next level. The tree-like procedure 

begins with 0:1 and 1:1 and each next level contains ratios of higher integers, see Figure 1c. It is easy 

to see how the notion of small and large integer ratios relates to multifrequency coordination and cross-

frequency coupling. This notion can be related to phase too if phase is expressed as a proportion of the 

cycle and thus as a p:q ratio, see Figure 1b. 

Here we address the theoretical hypothesis that the phase of bimanual coordination obeys the 

constraints of a covert cross-frequency coupling dynamic even if the behaviour is same-frequency. We 

conducted an experiment to quantify the stability of bimanual tapping, where each hand tapped once 

per cycle. The instructed phase relations between the hands, cued with auditory tones at the beginning 

of each trial, could be expressed as ratios of the tapping cycle and thus described as more or less 

complex. This metric makes predictions about the stability of a dense set of phases, not just in- and 

anti-phase.

Farey trees often arise when dealing with cross-frequency coupled (CFC) oscillator models. 

Interestingly, there is growing evidence for the role of cross-frequency hierarchical coupling in 

organizing neural dynamics [21].  Here we explored whether a CFC oscillator model could capture the 

phase complexity dynamics we measured behaviourally in our bimanual tapping task. We then 

extended this for previously-reported data [4] on small integer ratio attractors where one hand is 

tapping a repeating three-interval rhythms.

2. Experiment 1: Phase-synchronization-continuation tapping study 

2.1. Method

2.1.1 Participants. Twelve participants (age range 18-21 years; 5 male, 7 female), 

undergraduate students at the local psychology department, completed the task in exchange for extra 

course credit. All participants self-reported being right-hand dominant or ambidextrous. All grew up 

listening to Western music and some had musical backgrounds from Asian or Middle-Eastern origin. 

The research was approved by the McMaster University Research Ethics Board (MREB#2164).
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Figure 1. Bimanual phase-synchronization-continuation task (PSCT). (a) Participants produced a two-

tap pattern with their index fingers on an electronic piano by synchronizing with an auditory stimulus. 

The stimulus in the synchronization stage consisted of left and right target cues played at the same 

period but separated by an offset (phase). The instruction was to synchronize the left and right taps 

with the left and right auditory cues, respectively. To fix the period and phase of tapping during the 

synchronization stage, the target cues were played on the leading (dominant, right) side and the 

following (secondary) cues on the non-dominant side. During the continuation stage, only dominant-

side cues were played to fix the period, allowing participants to vary the phase between hands. The 

stimulus began speeding up during the continuation stage. (b) An example stimulus pattern expressed 

equivalently as time delays, p:q ratio, or phase. The p:q ratio is the time interval from the leading to the 

secondary cue divided by the interval between two leading cues. The ratio stands for phase 

normalized to unity. (c) Stimulus phase in each trial was taken pseudo-randomly from a set generated 

with a Farey tree. A subset up to Level 5 is shown here for brevity; see the Supplementary Table for a 

full list. Our main hypothesis was that bimanual tapping performance is associated with the tree level 

of the instructed phase. (d) A sample trial. Phase is defined in terms of the secondary tap relative to 

the leading tap. We measured accuracy, variability, and entropy in the first 20 seconds of the 

continuation stage (shaded area).
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2.1.2 Apparatus. Tapping times were collected with a digital MIDI piano and a computer. The 

computer, running a custom patch in Pure Data (Pd), synthesized and played through a pair of closed-

back circumaural headphones (Shure SRH440) two distinct pairs of sound samples, one pair for the 

stimulus and one pair for the participant’s key presses. The stimulus consisted of two pulse-like drum 

sounds with sharp attack, 20 ms decay, and centre frequencies at 770 (left) and 990 (right) Hz. They 

were played separately through the left and right headphone channels. Participants’ taps triggered 

synthetic-sounding pure tones with sharp attack and 50 ms decay time in lieu of traditional piano 

sounds. The left index finger tapped the C6 piano key (1046 Hz) and the right index finger the adjacent 

D6 (1174 Hz). The same Pd patch also recorded the timing of piano key presses as the participant 

tapped along to the stimulus. 

2.1.3 Stimuli. Both the leading and secondary tones played once a cycle, but separated by a 

phase-offset, see Figure 1a-b. For each trial, the phase relation between the secondary and leading cue 

was selected pseudo-randomly from a set of 12 phases spanning 0° (in-phase), to 180° (anti-phase). 

These phases corresponded to integer ratios taken from different levels of the Farey tree (see 

Supplementary Table and Figure 1c). The secondary cue was silenced during the continuation stage. 

The cycle period was set to 1000 ms (60 bpm) in the synchronization stage. During the continuation 

stage, the period decreased in steps of .1n-e.05n ms (n was the cycle number), reaching 284 ms (210 

bpm) at the end.

2.1.4 Task. The bimanual phase-synchronization-continuation task (PSCT) consisted of tapping 

in two stages: synchronization, where the tempo and phase were cued by the stimulus, and 

continuation, where only the tempo was cued, see Figure 1. During the synchronization stage, 

participants produced a succession of taps with the index finger of their dominant hand in synchrony 

with the leading tones in the ipsilateral channel of their headphones and, at a given phase-offset, they 

produced a succession of taps with the index finger of their other hand in synchrony with the secondary 

tones played in the respective ipsilateral channel (in this study, right happened to be the dominant side 

in all cases). They continued this rhythmic tapping for the 50 s duration of the trial. After the initial 

synchronization stage (5 s), there was a continuation stage during which the secondary tones stopped 

but the participant continued to tap both parts (Figure 1a). The leading cue pacing the dominant (right) 

side tap remained audible and slowly increased in tempo while the cue pacing the secondary tap was 

silenced. The instruction was to synchronize left and right taps with the corresponding left and right 
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stimulus sounds during the synchronization stage of the trial and to try to maintain the pattern during 

the continuation stage while following the increase in tempo. Controlling the tempo during the 

continuation stage prevented participants from speeding up or slowing down freely to reach a more 

comfortable tapping rate which would have resulted in individual variation in the trade-off between 

tempo and accuracy. We included the gradual increase of tempo in the continuation stage to destabilize 

the tapping pattern. In retrospect, speeding up was unnecessary because participants found it difficult to 

maintain the phase even at the fixed tempo, see Figure 1d.

2.1.5 Procedure. Upon arrival, participants read and signed an informed consent sheet, 

performed a series of practice trials until both they and the experimenter felt confident that the task was 

well understood, and then performed 24 trials, or two for each stimulus phase pattern. After that, 

participants completed a demographic questionnaire.

2.1.6 Pre-processing and Measures. The recorded tapping times were converted to a time-

series of phases by linear interpolation,  where  is a tap time of the θ𝑛 =
𝑇𝑓𝑜𝑙𝑙𝑜𝑤,𝑛 ― 𝑇𝑙𝑒𝑎𝑑,𝑚 ― 1

𝑇𝑙𝑒𝑎𝑑,𝑚 ― 𝑇𝑙𝑒𝑎𝑑,𝑚 ― 1
360 𝑇𝑓𝑜𝑙𝑙𝑜𝑤,𝑛

secondary hand found between two successive taps of the leading hand,  and . 𝑇𝑙𝑒𝑎𝑑,𝑚 ― 1 𝑇𝑙𝑒𝑎𝑑,𝑚

Separate indices m and n were needed because the left and right taps were not always necessarily 

aligned; on rare occasions the leading hand could miss a tap. The corresponding phases were discarded. 

Participants tended to exhibit large variability and converge to one of the two basic attractor phases as 

the instructed tempo kept increasing, namely in- or anti-phase (0° or 180°). For this reason, only the 

first twenty seconds of continuation were analysed (Figure 1d).

As is frequently done when analysing phase, we applied the circular statistics to characterize 

how well participants maintained the instructed phase in the continuation part of the trial. For a 

measure of accuracy, we took the difference between tapping phase and instructed phase, then the 

circular mean of that, then the absolute. For variability we used two closely related measures, circular 

standard deviation and phase consistency which is the mean resultant vector length of phases projected 

in the complex plane.

Entropy of phases was also computed as a measure alternative to the variance because there was 

a tendency for multimodal distributions to emerge even within the same trial. We used 𝐻 = ―

 in the domain from 0° to 180° with a fixed set of bins. The tendency for ∑𝑛
𝑖 = 1𝑝(𝜑𝑖)log 𝑝(𝜑𝑖)

multimodality was confirmed by using Gaussian Mixture Modelling (gmm from the mclust package for 
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R) and the Bayesian Information Criterion to determine the best number of Gaussians. This was applied 

separately per participant and stimulus phase, see Supplementary Figures 2 and 3.

Furthermore, all phases from all trials and participants were pooled together to obtain a 

probability distribution and determine whether some phases were more attractive than others in the 

sense of being visited more frequently. Next, we fitted a Zipf-Mandelbrot scaling law P=c(k+q)-s to 

their rank-frequency distribution. This was motivated by the multiplicative, branching character of the 

Farey tree and by the observation of such scaling in musical rhythms [22]. Pooling rhythmic intervals 

across various musical genres reveals the kind of scaling relation between their rank and frequency of 

occurrence that is usually associated with the distribution of words in languages [22]. The histogram 

was computed with a dense set of bins aligned to Farey tree ratios and then the coefficients were fitted 

against the log-transformed ranks and frequencies using non-linear least-squares optimization. This 

procedure is available as part of the modelling repository, see below.

2.1.7 Statistical analysis. Separate linear-mixed effects models were fitted for each dependent 

variable, namely accuracy, consistency, variability, and entropy of the produced phase (lme4 in R). The 

model-decision procedure involved a minimal specification including an intercept and a random effect 

for the intercept, accounting for individual overall level of performance, and incrementally including as 

predictors the stimulus ratio complexity and the given phase. The coefficients of the significant fixed 

effects are reported in the text, with significance determined using the Satterthwaite method.

2.2. Results

2.2.1 Accuracy and variability. A linear increasing trend for accuracy (deviation) with respect 

to ratio complexity was observed, as expected, while the association with phase was more complicated, 

see Supplementary Figure 1a,d. The linear model confirmed the effect of the continuous predictor ratio 

complexity level [β=2.439, SE=.989, t=2.47, p<.05], or an increase of 1.96 degrees per complexity 

level, while phase, also a continuous predictor, was not significant [t<1]. Phase consistency, after 

applying the logit transformation [23], exhibited a decreasing trend with complexity level [β=-.206, 

SE=.029, t=-7.22, p<.001], as expected, and in addition to that with phase [β=-2.962, SE=.385, t=-7.70, 

p<.001], see Supplementary Figures 1b,e. Standard deviation exhibited an increasing trend with 

complexity level [β=.753, SE=.219, t=3.44, p<.001], as expected, as well as with phase [β=17.132, 

SE=2.948, t=5.81, p<.0001], see Figures 2 and Supplementary Figure 1f. Entropy exhibited a similar 

pattern of effects for complexity level [β=.107, SE=.013, t=8.13, p<.001] and phase [β=1.236, 

SE=.179, t=6.92, p<.001].
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Figure 2. Variability in the PSCT. See Supplementary Figure 1 for accuracy and consistency.

Figure 3. The distribution of tapping phases exhibits scaling. The histogram in the main panel 

is over data pooled from all trials and participants. The log-log inset shows the same 

histogram but with bins re-ordered according to their complexity rank; the fitted Zipf-

Mandelbrot law shown with a dashed line.
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2.2.2 Rank-frequency scaling. We took the frequency distribution of all tapping phases pooled 

across trials and participants. Figure 3 suggests that tapping was attracted more strongly to phases 

described by simple ratios. Converting this histogram to a logarithmic rank-frequency plot revealed a 

very good fit with a Zipf-Mandelbrot scaling law  [c=.17, q=34.92 , s=-.79, R2=.986]. 𝑃 = 𝑐(𝑘 + 𝑞) ―𝑠

3. Experiment 2: Perception of phase relations in an auditory deviant detection task

In two studies, we examined the auditory perception of the phase-offset stimuli from 

Experiment 1. An auditory yes-no task tested detection of a small time deviation, with the hypothesis 

being that the detection would depend on the Farey level of the stimulus.

3.1. Methods

3.1.1 Participants. Undergraduate students from the local psychology department (experiment 

2A: N=58, age range 18-37 years, median=19; 34/24 female/male; 2B: N=62, age range 17-21 years, 

median=18; 50/12 female/male) completed the task online on their personal computers at undisclosed 

locations in exchange for extra course credit. The research was approved by the McMaster Research 

Ethics Board (MREB#2164). 

3.1.2. Apparatus. The experiment was administered remotely and was fully browser-based, 

implemented with jsPsych plugins [24], and hosted on a commercial server (pavlovia.org). Using 

designated yes/no keyboard buttons, participants indicated if the last tone in a short sound stimulus 

deviated from its expected temporal location.

3.1.3 Stimuli. The stimuli had the same structure as in the synchronization stage of Experiment 

1, see Figure 1a-c, but with only four repetitions. The phases, listed in Supplementary Table, were 

taken from a denser set in Experiment 2A, 24 phases up to level 12 of the Farey tree, and a sparser set 

in 2B, 10 phases but three trials of each. The last sound of the stimulus pattern, the last secondary tone, 

was subject to deviation τ=+/-{100, 70, 40, 20, 10, 0} ms in A, τ=+/-{200, 120, 80, 40, 20, 0} ms in B. 

Crossing all phases and deviants resulted in 264 different stimuli in A, 110 in B. The left side was 

leading, unlike in Experiment 1. For a more pleasant sound over repetitive observation, different tones 

with sharp wood-block sounds were used (90 ms duration, 5 ms attack, 85 ms linear decay), peak 

power at 880/968 Hz on left/right, respectively, mixed with a noisy waveform with a broad power 

spectrum to make the task more difficult.

3.1.4 Procedure. Participants visited a series of web pages in order: the department’s 

recruitment site, an information and consent sheet, an anonymized demographics questionnaire, and the 
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auditory task, where they also saw demonstration and practice trials, and a headphone usage detection 

task [25], followed by the task of interest.

3.1.5 Measures. Performance was evaluated in terms of reaction times and the threshold and 

sensitivity at 50% probability of detection, separately for each phase and positive and negative 

deviations. This is an exploratory study with an important limitation: few samples were collected at 

each stimulus level in order to sample a wide range of phase relations and deviations within a 

reasonable amount of time. In Study A it was impossible to fit psychometric curves for each 

participant. Instead, we calculated percent correct responses across participants. We eliminated trials 

with stimulus phase lower than 90° because of erratic responses.

3.2. Results

The results from Experiment 2A and 2B partially agreed with our hypothesis but were somewhat 

inconsistent. In Experiment 2A, simple linear regressions did not find an association between detection 

threshold and ratio complexity [β0=81.77, β1=1.13, R2=.06, F(1,24)=1.57, p=0.22]. However, 

sensitivity magnitude exhibited a negative association with complexity [β0=.043, β1=-.001, R2=0.19, 

F(1,24)=5.43, p<.05] (Supplementary Figure 4a), in agreement with our hypothesis. Linear mixed-

effects models for the reaction times did not show an effect of complexity level [t<1]. For the hit rates, 

a logistic mixed-effects model did not find an association with complexity level [z<1].

In Experiment 2B, sensitivity and threshold parameters were obtained per individual. Linear 

mixed-effects models indicated an association between threshold and complexity level [β=1.954, 

SE=.374, t=5.229, p<.001], in agreement with our hypothesis, and a trend for an effect of complexity 

level on sensitivity [β=-.0088, SE=.0048, t=-1.832, p=.067] (Supplementary Figure 4b). Reaction times 

tended to increase with level, but the effect was only marginally significant, [β=3.427, SE=1.674, 

t=1.94, p=.052]. For the hit rates, a logistic mixed-effects model showed that correct detections were 

negatively associated with complexity level [β=-.0217, SE=.0045, z=-4.851, p<.001]. 

4. Cross-frequency coupling model for bimanual phase tapping

We used a minimal mathematical model of cross-frequency synchronization, the phase-

attractive circle map [18].

(1)θ𝑛 + 1 = θ𝑛 +𝛺 ―
𝐾

2𝜋(1 + 𝐴cos 2𝜋θ𝑛)sin 2𝜋𝜃𝑛 +𝜎𝛤   (𝑚𝑜𝑑𝑢𝑙𝑜 1)

The so-called bare winding number Ω equals p rotations of a slow oscillator relative to q rotations of a 

fast oscillator. Coupling strengths K or A different from zero mean that every fast cycle “kicks” the 
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slow one according to the given nonlinear coupling terms. Coupling leads the system to mode-lock on 

periodic behaviour with a so-called dressed winding number W that can be understood as an effective 

rate of rotation. Increasing K or A widens the range of initial conditions Ω for which the system mode-

locks to low-integer ratios W. The width of mode-locking regions, known as Arnol'd tongues, is 

inversely proportional to the level of the Farey tree of the given W, also expressed as a p:q ratio. This 

has helped explain how the stability of multifrequency synchronization is linked to simplicity of the 

required integer ratio in motor behaviour [17,18]. To endow the simulations with some of the 

variability characteristic of human performance, we added a zero-mean Gaussian noise source Γ with 

standard deviation σ. Note that strict mode-locking is unlikely to be observed in the presence of noise 

but for the simplest ratios. This does not prevent the winding rates from being weakly attractive in their 

vicinity, see Supplementary Figure 5. This also agrees with our bimanual tapping data, where the phase 

drifted widely, as confirmed by Figure 1d and the large SD in Figure 2, but also tended to slow down 

and be observed more frequently in the vicinity of some ratios than others.

Figure 4. The relation between variability of winding rate in the phase-attractive circle map 

and complexity level of its driving frequency, the ratio Ω=p:q, for a selected parameter 

configuration, K=.6, A=.5, σ=.02. Each trial, circular standard deviation analysed the 

increments , after converting them to the necessary scale by 𝑤𝑛 = [θ𝑛 + 1 ― θ𝑛] 𝑚𝑜𝑑 1
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multiplying by 360. The multimodality at higher complexity levels is not of the same nature as 

in Figure 3 but is related to the fact that very different initial conditions can fall on the same 

tree level when approximating random stimuli to ratios.

The relevance of this model to the present behavioural task is contingent on two important 

assumptions. First, the increment of the circle map, the local2 winding number 𝑤𝑛 = [θ𝑛 + 1 ― θ𝑛

, and not phase per se, is what stands for the control process timing the secondary tap after the ] 𝑚𝑜𝑑 1

leading tap. This is consistent with recent findings that in synchronization tasks the timing of taps is 

associated with the speed and/or amplitude of neural rotational dynamics in relevant areas of the 

monkey brain [26,27]. Second, a motor inhibition prevents some repeated rotations (from the faster 

oscillator) from being converted to behaviour. Consider that in the circle map one oscillator can rotate a 

number of times relative to the other. Presumably, a slow oscillator times the beginning of a tapping 

cycle and a fast oscillator times the waiting time for the following tap. Yet, in a bimanual tapping task 

each hand taps only once per cycle. This implies that an additional gating process is needed to block 

secondary taps without interrupting the covert timing mechanism. Without needing to speculate about 

possible neural mechanisms for such inhibition, it suffices to say that with training, macaque monkeys 

learn to engage in covert timing while suppressing their movements [28,29]. Together, these are strong 

assumptions and as such can be theoretically productive. We propose a hierarchy with dynamics on 

different time scales instead of two parallel commensurate dynamics such as in modern versions of the 

well-known HKB model [30,31].

4.1. Methods

The model system was iterated 30 steps and the local winding rate , not the phase, was kept 𝑤𝑛

for analysis. On each trial, the parameter Ω was either a ratio like the ones in the behavioural task or a 

random initial condition. A total of 480 trials were collected per model configuration. The parameter 

space was explored by varying the coupling strength, K={.0, .1, …, 1.2}, and the second coupling term, 

A={.0, .1, …, 1.}, while the standard deviation of the Gaussian noise was kept fixed, σ=.02. The code 

2 This is different from the usual definition of the so-called dressed winding number , the 𝑊 ≡ lim
𝑛→∞

1
𝑛θ𝑛

mode-locked rate at which phase increments converge to in the long limit.
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for this model and the respective figures (Figure 4 and Supplementary Figures 5 and 8) is available 

from an on-line repository3.

4.2. Results

We tested whether the pattern of results seen in the bimanual tapping phase task could be 

reproduced. First, as predicted, we found that variability increased with the ratio complexity of the 

driving frequency Ω, Figure 4. A second aspect of the tapping data that was reproduced qualitatively 

was the clustering of winding rates around low-integer ratios and the scaling property of this 

distribution expressed as a log-log rank-frequency plot, s=-.51, see Supplementary Figure 5. The model 

exhibited multimodal behaviour, see Supplementary Figures 6 and 7. Future work could address 

whether multimodal behaviour in the tapping task can be understood in terms of how co-existing 

attractive states in the model depend on coupling and noise parameters. Importantly, large parts of the 

parameter space in the range 0<A<1 and 0<K<1 agreed, qualitatively at least, with the key properties of 

the tapping study, namely, increasing variability with stimulus level and scaling, see Supplementary 

Figure 8.

5. Cross-frequency coupling model for iterated rhythms

A theoretical approach is stronger if it generalizes easily beyond the specific task it was developed for 

originally. We considered iterated single-hand tapping of rhythms because it also exhibits a tendency 

towards simple ratios. Historically, iterated tapping of rhythms and bimanual coordination of 

oscillatory movements have been addressed separately, oftentimes by different groups and using 

different explanatory frameworks. The task considered here consists of tapping a three-interval rhythm 

repetitively. On each trial, the rhythm is given initially by an auditory stimulus with three successive 

tones, consisting of intervals that may or may not obey certain musical intuitions. Tapping this rhythm 

for a number of repetitions after the stimulus has been silenced tends to converge closely but not 

perfectly to time intervals described as simple ratios [11]. An addition to this task consists of the 

rhythm iteration procedure: on each trial, participants initially tap to a rhythm with intervals randomly 

chosen. Then they tap the stimulus that is a copy of their most recently produced pattern and this is 

repeated several times. The results of this task show that people’s tapping tends to converge on simple-

3 https://gitlab.com/dodo_bird/rstb_2021
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ratio patterns, but it also reveals differences across cultures that can be thought of as culturally-specific 

priors [4].

5.1. Methods

In this modelling experiment, we assumed that three independent oscillatory processes specified 

by Eq. 1 were activated in a chain to produce three intervals. Other parameters such as number of taps 

and iterations were set after those found in behavioural experiments reported elsewhere [4]. The trials 

consisted of five blocks of simulated tapping, each block consisting of ten repetitions of the rhythm. 

The first block started with a set of three random rotation numbers from a uniform distribution, 

Ωn∈[0,1], n={1,2,3}. The effective winding numbers Wn of the independent oscillators at the end of a 

block were carried over as Ωn in the next block. We simulated trials, N=10,000, using a hand-picked set 

of parameters, K=1.1, A=.8, σ=.005, that exhibited reasonable variability as well as similarity to 

empirical results. The code for this model and Figure 5 is available from an on-line repository4.

5.2. Results

Figure 5 is a projection of the three-dimensional histogram of the convergent winding rates of 

each of the three independent oscillators. The heat map indicates regions of high concentration and, for 

reference, low-ratio locations are marked. It shows that, despite the random initial conditions, this 

process tends to converge towards simple integer ratios. Here all low-integer combinations tend to be 

represented. This stands in contrast to cross-cultural studies where different human cultures show bias 

for some combinations of simple integer ratios over others, consistent with a mixture of innate 

constraints and experience [4].

We found that the coupling strengths K and A needed to be higher and noise lower than in the 

bimanual simulation study. It is known that past the critical K >1 the circle map exhibits different 

properties. Among others, its regions of stability (the Arnol'd tongues) overlap, meaning that with 

added noise convergence to the lowest levels of the tree should be faster but jumps back and forth are 

possible too. More work is needed to study in detail different dynamical regimes of CFC and how they 

relate to various behavioural phenomena.

4 https://gitlab.com/dodo_bird/rstb_2021
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Figure 5. Projection of a three-dimensional histogram of convergent relative winding rates of 

three independent circle maps, treated here as intervals of a rhythm. Sides of the triangle, 

each on the scale from zero to one, represent proportion relative to the full rhythm which is 

the concatenation of the three circle maps. The heat map is for probability density. Crosses 

mark locations where the corresponding rates reduce to simple ratios. The driving frequencies 

of each of the three circle maps were random in the first trial of a simulation but at the 

beginning of each new block they were updated from the last effective winding numbers from 

the previous block, eventually converging to simple integer ratios.

6. Discussion

The present work stresses the importance of complex and unstable forms of coordination 

beyond in-phase and anti-phase synchronization. A bimanual tapping study explored the hypothesis 

that additional coordination modes exist in between the stable in-phase and anti-phase movements 

typically reported in the literature. We expressed phase as a proportion of the cycle and then used the 
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levels of the Farey tree to define a metric of ratio complexity, drawing a prediction about the relative 

stability of tapping. We found evidence linking ratio complexity to the accuracy and variability of 

tapping at unusual phases. Albeit not stable modes, these phases impact performance, and can be 

thought of as so-called ghost attractors. Interestingly, the auditory perceptual study provided 

convergent but weak evidence. This suggests that the phenomena discussed here are strongly dependent 

on involvement of the motor system, although it is also possible that the unusual testing circumstances 

resulted in poorer experimental control.

A second kind of evidence came from the distribution of tapping phases which, pooled across 

trials and participants, exhibited a hierarchical property in the form of a rank-frequency scaling law. 

We then confirmed that these phenomena are reproduced qualitatively by the phase-attractive circle 

map, a cross-frequency coupling (CFC) approach. As an added feature, the same modelling approach 

could capture previously reported privileged simple ratio relations in rhythmic three-interval tapping 

patterns. This convergence suggests that small integer ratios are easier to perform because cross-

frequency coupled (CFC) oscillators are more stable at such ratios, contributing to our understanding of 

phenomena as diverse as attractor states in coordination and universal tendencies in musical behaviour.

CFC provides an alternative path to addressing the rich repertoire of coordination patterns 

exhibited by humans and other animals. Speculatively, the plausibility of the phase-attractive circle 

map needs to be discussed in light of related phenomena in neural dynamics. There is growing 

evidence that cross-frequency hierarchical coupling is intrinsic to, and may help organize, neural 

dynamics in individual neurons [32] as well as populations of neurons [21], and is linked to diverse 

scenarios involving many different cognitive and motor functions [33,34], including rhythm and 

musical meter [8,35]. In this context, it is worth raising the question whether intrinsic neural CFC 

implements a low-level prior for rhythmic behaviour in general. 

Our claim is not that CFC fully explains both low-level sensorimotor coordination processes 

and musical rhythms, only that it provides a so-called enabling constraint [36]. In this sense, intrinsic 

neural dynamics understood as an enabling constraint act as predispositions that facilitate and bias the 

emergence of rhythmic behaviour but do not completely determine it. Other sources of constraint 

include the musical experience and enculturation that begins very early in development, both as an 

additive or a subtractive process of perceptual narrowing [13]. The heterogeneities that are observed 

between different musical cultures [4], likely reflect these effects of experience and enculturation. To 

complicate the picture further, some musical traditions include rhythms that are complex in ways that 
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cannot be framed as a hierarchy of integer ratios [37], suggesting that either the current model is too 

simplistic or that experience can be very powerful.

The present work led to another interesting observation, that a scaling law described the 

distribution of coordination modes and was matched qualitatively by the winding numbers of the 

phase-attractive circle map. This could be a natural consequence of the hierarchical, branching nature 

of the Farey tree [38]. This observation also makes sense in light of so-called universal scaling laws in 

musical and temporal behaviour of humans and other animals [22,39,40]. It is beyond the scope of this 

paper to propose a focused explanation in relation to scaling phenomena in general. It suffices to say 

that such phenomena appear when complex systems are poised near a critical point of instability, and 

balance opposite constraints such as for stability and diversity.
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