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Abstract

A novel approach to hearing-aid signal processing is described, which attempts to re-establish a normal neural representation
in the sensorineural impaired auditory system. Most hearing-aid 5tting procedures are based on heuristics or some initial
qualitative theory. These theories, such as loudness normalization, loudness equalization or maximal intelligibility can give
vastly di(erent results for a given individual, and each may provide variable results for di(erent hearing impaired individuals
with the same audiogram. Recent research in characterizing sensorineural hearing loss has delineated the importance of hair
cell damage in understanding the bulk of sensorineural hearing impairments. A novel methodology based on restoring normal
neural representation after the sensorineural impairment is presented here. This approach can be used for designing hearing-aid
signal processing algorithms, as well as providing a general, automated means of predicting the relative intelligibility of a
given speech sample in normal hearing and hearing impaired subjects.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There have been several advances in our under-
standing of the neurophysiological basis of hearing
impairment. The insight that hair cell damage alters
the auditory system has profound e(ects on the de-
sign of hearing-aid systems to combat sensorineural
loss. While conductive loss, which can arise after os-
sicle damage or an ear drum puncture, can largely be
overcome with frequency-shaped linear ampli5cation,
the types of impairment associated with inner hair cell
(IHC) and outer hair cell (OHC) damage require a new
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suite of algorithms. Up until the mid-1980s the
mechanisms underlying the more prevalent type of
impairment, hair cell loss, were not well understood.
This led to a group of ad hoc algorithms, largely
based on the discerned symptoms (spectrally shaped
sensitivity loss, identi5cation in noise problems) as
opposed to the mechanisms underlying the symptoms.

The approach to evaluating hearing aids in the
audiological 5eld has been solely empirical. By us-
ing neuro-physiologically based auditory models,
we show predictive measures for oAine evaluation.
These measures are consistent with experimental data
on human performance. Furthermore, using auditory
models, one can form a general hearing-aid algo-
rithm design methodology, whose performance in
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simulations shows a high correlation with empirical
evidence.

The processing of an acoustic signal by the periph-
eral auditory system can be summarized as follows.
A sound signal is directed to the ear canal by the
pinna (outer ear). The eardrum responds to the pres-
sure wave by deEecting. This deEection causes the
three small bones of the inner ear to move, produc-
ing a similar movement in the oval window of the
cochlea. This vibration starts a travelling wave in the
Euid of the cochlea. Up to this point, the system is well
characterized by a linear transfer function, but beyond
this point, the system is highly nonlinear. The travel-
ling wave produces a peak displacement at some point
along the cochlea that is a function of frequency and
outer hair cell (OHC) undamping. OHCs are motile
members that precisely modulate the basilar mem-
brane; the basilar membrane is tonotopically mapped.
Inner hair cells (IHCs) transduce the mechanical dis-
placement of the basilar membrane to nerve 5rings.
The OHCs undamping enhances the IHCs sensitivity
and selectivity [29].

The loss of these hair cells produces symptoms such
as elevated thresholds, loss of frequency selectivity,
and loss of temporal discrimination [26,23]. The con-
sequences of hair cell damage for auditory discrimina-
tion are far ranging, taking entire books to catalogue
[26]. Necessary for future hearing-aid algorithms is a
quantitative understanding of how IHC and OHC loss
a(ects the processing of the auditory system and how
that processing a(ects perception.

The objective of our research is to restore
near-normal 5ring patterns in the auditory nerve,
in spite of hair cell damage. While there is some
evidence of reorganization in the mammalian au-
ditory cortex [18] resulting from hair cell dam-
age, there is no present evidence that the ba-
sic cortical circuitry does not work. That is, the
processing in the brain that is eminently capa-
ble of segregation, streaming, and decoding, may
still be able to function properly if the incoming
signals are parcelled properly.

A normal hearing process can be described as the
block diagram in Fig. 1, where an input signal X is
transformed by the auditory periphery, H, to produce
a neural response Y.

The auditory periphery is treated as a black box in
many signal-processing applications. In the hearing

H

X Y

Fig. 1. Block diagram representation of normal hearing system.

H

X Y

Fig. 2. Block diagram representation of impaired hearing system.

H

X Y

Nc

Fig. 3. Block diagram representation of our compensation scheme.

compensation application this approach has severe
limitations. The success of the algorithm will be
directly proportional to the amount of information
about H that one embeds in the design. With the loss
of hair cells the functionality of H changes, resulting
in a hearing impaired system as shown in Fig. 2. That
is, the same input signal produces a distorted neural
signal, Ŷ , when processed by the damaged hearing
system Ĥ .

The 5rst step in our method of compensating for
hair cell loss is to alter the input signal going into the
impaired system such that after the impaired ear there
is a normal neural representation; the algorithm to al-
ter the input signal is called the “Neurocompensator”
(proposed by Becker and Bruce [4]), here noted as Nc

(Fig. 3).
If Ĥ was invertible the Neurocompensator would be

the cascade of the undamaged model and the inverse
of the damaged system or Nc = HĤ−1, or H = NcĤ .
This approach to hearing aid design has been explored
by Anderson [1], Chabries et al. [16], and Anderson
et al. [2]. Unfortunately, things are not so simple. The
auditory system has very important nonlinearities [21],
time variances [27] and many to one mappings. The
simple fact that a sound can be completely masked by
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the presence of a second sound is evidence that the
auditory system discards information. This means a
perfect inversion is not possible. However, even if H
is non-invertible, one may still be able to capture its
capabilities suPciently to approach normal hearing.

The key idea underlying the technique described
below is to use models of the intact and damaged
auditory system to evaluate the perceptual impact
of hearing compensation algorithms oAine. In our
method the signal is pre-processed by the Neurocom-
pensator, and then fed into the impaired model. The
resulting neural representation is compared to the neu-
ral representation of the signal after the normal hear-
ing model. Perceptual distortions from sensorineural
impairment should be minimized by the Neurocom-
pensator by re-establishing in the impaired auditory
system the normal pattern of neural 5ring. The
methodology therefore hinges on a detailed model of
the peripheral auditory system.

2. Auditory model

The auditory periphery model used throughout is
from Bruce et al. [9], following initial work by Bruce
et al. [10], Heinz et al. [20] and Zhang et al. [39]. The
system is shown in Fig. 4.

This model describes the function of the auditory
system from the middle ear to auditory nerve. For
outer ear functioning the head related transfer func-
tion from Wiener and Ross [38] is used. The auditory
model itself comprises several section, each providing
a phenomenological description of a di(erent part of
auditory periphery function.

The 5rst section models middle ear 5ltering. The
second section, labeled the “control path,” captures the
OHCs modulatory functions, and includes a wideband,
nonlinear, time varying, band-pass 5lter followed by
an OHC nonlinearity (NL) and low-pass (LP) 5lter.
This section controls the time-varying, nonlinear be-
havior of the narrowband signal-path basilar mem-
brane (BM) 5lter. The control-path 5lter has a wider
bandwidth than the signal-path 5lter to account for
wideband nonlinear phenomena such as two-tone rate
suppression.

The third section of the model, labeled the “sig-
nal path”, describes the 5lter properties and traveling
wave delay of the BM (time-varying, narrowband 5l-
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Fig. 4. Block diagram of the computational model of the auditory
periphery from the middle ear to the auditory nerve.

ter), the nonlinear transduction and low-pass 5ltering
of the inner hair cell (IHC NL and LP), spontaneous
and driven activity and adaptation in synaptic trans-
mission (synapse model), and spike generation and re-
fractoriness in the auditory nerve (AN). In this model,
CIHC and COHC are scaling constants that control IHC
and OHC status, respectively.

The gain functions of linear versions of the
time-varying narrowband 5lter in the signal path,
plotted as gain versus frequency deviation Rf from
the 5lter’s best frequency (BF) are given in Fig. 5.

The 5lter is fourth-order and is plotted for 5ve dif-
ferent values of �sp between �narrow and �wide. �sp is
the time-bandwidth control parameter, where larger
values correspond to more frequency selectivity, and
�sp�[�wide; �narrow]. R�=�narrow−�wide. �narrow was cho-
sen to produce a 10 dB bandwidth of ∼450 Hz, and
�wide was chosen to produce a maximum gain change
at BF of ∼ 41 dB at 1:7 kHz. This plot can be inter-
preted as showing the nominal tuning of the 5lter with
normal OHC function at 5ve di(erent sound pressure
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Fig. 5. Filter shaping functions of the time-varying narrow-band
5lter in the signal path, plotted as gain versus frequency deviation
(Rf) from BF. This example is at 1:7 kHz.

levels, or alternatively, as the nominal tuning of the
5lter for 5ve di(erent degrees of OHC impairment.

The success of the Neurocompensator strategy pre-
sented below depends upon the accuracy of the audi-
tory model of the normal and damaged ear. The Bruce
et al. [9] model, while being based on cat physiol-
ogy is thought to correspond very closely with hu-
man physiology. This particular model has a long his-
tory of development and good 5t to a wide range
of empirical data. The auditory model can capture a
range of phenomena due to hair cell nonlinearities, in-
cluding loudness-dependent sensitivity and bandwidth
modulation (as stimulus intensity increases the out-
put response levels o( and frequency-tuning becomes
broader), and masking e(ects such as two-tone sup-
pression. Additionally, the model incorporates critical
properties of the auditory nerve response including
synchrony capture in the normal and damaged ear and
replicates several fundamental phenomena observed
in electrophysiological experiments in animal audi-
tory systems subjected to noise-induced hearing loss.
For example, with OHC damage, high frequency au-
ditory nerve 5bers’ tuning curves become asymmetri-
cally broadened toward the lower frequencies and tend
to become synchrony locked to lower frequencies.

In theory, the Bruce et al. [9] model is capable of
simulating auditory nerve responses in both a normal
and damaged human auditory system accurately. The

damaged model must be tuned to the parameters of
a particular individual’s hearing-impairment. This re-
quires estimates of both inner and outer hair cell loss
over a range of frequencies. The standard audiolog-
ical assessment, the audiogram, simply measures the
threshold for pure tones at each of a small set of fre-
quencies. An elevation in pure tone threshold cannot
di(erentiate between a reduction in OHC driven gain
versus a loss of IHCs tuned to that frequency. In sen-
sorineural hearing disorders, it is generally assumed
that a moderate elevation in threshold primarily re-
Eects OHC loss, while a severe elevation reEects an
additional IHC loss. Although this pattern is typical in
individuals with age-related and noise-induced hear-
ing loss, the exact proportion of IHC to OHC loss
may deviate from the typical pattern in some indi-
viduals, and also may not hold at all for individu-
als with less common types of sensorineural damage,
e.g. drug-induced. Better methods for estimating, sep-
arately, the degree of inner and outer hair cell loss,
such as using noise-masked tones [28] are intrinsic to
this strategy. Given accurate measurements, the model
could be tailored to compensate for many individual
patterns of de5cits.

3. Damaged models and methods

Initial testing of our algorithm to establish the va-
lidity of our model-based approach was accomplished
using idealized models of hearing impairment similar
to those described in Byrne et al. [12]. The di(erent
audiograms are given in Fig. 6A, and the individual
contributions of inner and outer hair cell losses to each
loss pro5le are given in Fig. 6B–F.

The impairments of inner and outer hair cells per
frequency were calculated so that OHC impairment
accounted for around 50–60% of the total threshold
shift in dB [28]. The percent IHC loss was then ad-
justed to explain the remaining threshold shift. Loss
pro5les 3, 4, and 5 are indicative of presbyacucis or
progressive sound-induced hearing loss and are more
typical of the normal hearing loss pathology.

The stimulus presented to the normal and hearing
impaired auditory model was Gaussian noise shaped
to have the same spectrum as the long term average
speech spectrum (LTASS, [13], combined data). A
200 ms LTASS input was sampled at 500 kHz and
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Fig. 6. Hearing threshold shift for 5ve candidate audiograms taken from Byrne et al. [12]. Di(erences are due to approximating threshold
shift with IHC and OHC damage. The dashed and X marked lines are ideal estimated audiograms, while the solid lines are the actual
audiogram provided by the Bruce et al. [9] model.

presented at 75 dB SPL into the normal model. The
impaired model input would be processed by some test
compensation strategy before being input into one of
the impaired models, so the power level would Euc-
tuate depending on the compensation strategy used.
The high sample frequency is necessary for the Bruce
et al. [9] auditory model.

The output of the model was a time series, 230 ms
long (the extra time versus the input could be used
to judge o(set e(ects), with a 22 050 Hz sample rate,
of instantaneous neural spike rates across seven oc-
tave bands, starting at 125 Hz and ending at 8000 Hz.
The neural best frequencies were chosen to mimic

the Byrne et al. [12], (Fig. 2) audiogram data points.
A typical output of a normal and impaired auditory
model at 250 Hz is given in Fig. 7.

The error function we used was 5rst derived for
normal hearing in Bondy et al. [6], it follows the
development of the speech transmission index (STI,
[3]) but with neural equivalents. It is hoped that en-
compassing the cochlear processing and impairment
will circumvent the problems [19] had with using the
articulation index to 5t hearing-aids. Our objective
function for assessing di(erences between normal and
impaired neural representations is a modi5ed Hebbian
rule. Where a Hebbian rule would strictly quantify
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Fig. 7. Time plot of instantaneous spiking rate versus time for the normal auditory model and the impaired auditory model. The impaired
model is based on Audiogram #4 from Fig. 6 with the half-gain rule applied (see Section 4) to the input. The inset shows a closeup,
where synchrony is very evident, as well as some di(erences between the Normal and Impaired outputs.

correlate 5rings between the two models, we use
the instantaneous rate, so the information in speci5c
spikes is lost. The error in any band is the absolute
value of one minus the correlation between the nor-
mal and impaired 5ring patterns and normalized by
the average spike rate from the output of the nor-
mal auditory model. This error is calculated for each
of the seven frequency bands. The error in the ith
frequency band, for the jth impaired condition is:

�ij =

∣∣∣∣∣∣∣
1 −

*
x
i

*
y
ij

T

*
x
i

*
x
i
T

∣∣∣∣∣∣∣
; (1)

where
*
x is the normal auditory model instantaneous

spiking rate vector, and
*
y is the impaired auditory

models instantaneous spiking rate vector over time.

This metric cannot capture transient, or timing infor-
mation of the auditory model because it cannot be
coded through synchrony capture. The LTASS input
is a spectrally steady-state signal, so this Hebbian met-
ric can capture distortion in the response. For the fol-
lowing results this simply coincides with a statistically
mean processing strategy. This is loosely equivalent to
using a signal-to-noise ratio (SNR) metric, since most
of the power in an utterance is due to voiced speech,
the SNR captures mostly e(ects of voiced speech. Syn-
chrony capture is very evident in the auditory nerve
during voiced speech. Further research is necessary to
deal with the auditory systems time-adaptive charac-
teristics.

The individual bands were then summed into a sin-
gle error value with a weighting function following
the STI [34] frequency importance weighting, but de-
rived for the neural representation speci5cally [6]. The
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total error is calculated using

Errorj =
N∑

i=1

�i · �i; (2)

where �i’s are the bands importance weighting func-
tions (shown in Fig. 8), and the �i’s are calculated
through Eq. (1).

Bondy et al. [6] shows that this weighted sum of
Hebbian error is a monotonic function of intelligibil-
ity. This is important for oAine assessment because it
gives us a way to judge di(erent hearing-aid process-
ing strategies against one another. The actual error will
be a relative indicator between strategies under test,
not an intelligibility value. While, there is a rough cor-
relation between this error function and intelligibility,
it is best to say that we are assessing the degree that
a processing strategy returns a normal auditory repre-
sentation, and that representation includes things like
loudness normalization and synchrony capture.

The process of predicting ePcacy of hearing-aid al-
gorithms is to take the LTASS stimulus, pass it through
the normal auditory model and then take the same
stimuli, preprocess it with the hearing-aid algorithm
under test and pass it through an impaired auditory

model, whose audiogram loss follows one of the pro-
5les in Fig. 6. Then calculate the neural distortion
following Eq. (1). Repeat this for several frequen-
cies and sum this error following Eq. (2). The next
section illustrates how this predictive measure closely
5ts empirical data, and subsequent section extends
this to train new processing strategies for hearing-
aids.

4. Relation to empirical data

The validity of restoring normal auditory nerve ac-
tivity is tested by asking the question: would the stan-
dard 5tting strategies, when applied to the input of
the impaired model, result in optimal improvements
in neural coding?

Early papers in audiology attempted to describe the
amount of gain necessary for comfort and intelligi-
bility. Markle and Zaner [24] give data showing how
restoring normal hearing thresholds by setting the gain
in each frequency band exactly equal to the threshold
loss results in a signal too loud to be comfortable or
intelligible. Rather than employing a one-to-one gain
to threshold loss, Byrne and Fi5eld [14] found that a
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Fig. 9. Neural error function versus gain ratio (R), showing a minimization of di(erences between the normal and impaired auditory models
for a hearing-aid gain ratio. The vertical line is at the ratio (R) which minimizes the error curve, the X is at the value predicted by Byrne
and Fi5eld [14] data (0.46). The mean scheme in A minimizes neural di(erences between the normal and impaired at a ratio of gain to
hearing loss of 0.44 which is very close to the empirical data of 0.46 dB of gain per dB of hearing loss. The Threshold Shift is raised to
the power of the ratio since the 5tting strategies correspond to a dB:dB gain. Graphs B–F show the error curves for each loss pro5le.

0.46-to-one gain to threshold shift was optimal. That
is, for every 10 dB threshold shift, the gain for opti-
mum intelligibility should be 4:6 dB. We started with
modeling the Byrne and Fi5eld [14] data because it
is the basis for the widely used [25] 5tting strategies
from the National Acoustics Lab of Australia (NAL-1,
NAL-R, NAL-RP, NAL-NL1: : :).

The 5rst experiment modeled the neural represen-
tation distortion introduced by setting di(erent gains
per dB threshold shift. Multiple ratios, R, are mod-
eled with the gain in dB per dB of loss changing from
1:1, or 1 dB of gain per dB of threshold loss (mimick-
ing Markle and Zaner [24]) to 0:1, or no processing
whatsoever.

The LTASS input stimulus and the error calculation
is described in Section 3. The experiment is run for all
5ve loss pro5les with a sweep of the gain ratio, and
the results are shown in Fig. 9, the y-axis is in model

units, with larger values representing more distortion
in the auditory nerve.

The vertical line drawn at the minimum error
point for the average of the 5ve model audiograms is
0:44 dB gain per dB threshold loss. Clearly this result
is very close to empirical evidence (0.46). Model
audiograms three, four and 5ve are more indicative
of typical hearing loss pathology and these have less
individual error than the Eat audiogram of loss pro-
5le one. Another important insight is that the more
acute losses need higher gain. This is consistent with
empirical data for 5tting the profoundly impaired.

Brooks [7] gives a possible theoretical footing for
increasing gain at half the hearing threshold degrada-
tion by pointing out that the most comfortable level
is approximately half way between threshold and the
maximum tolerance level. Kates [22] suggests that the
half-gain rule is based on the natural compression ratio
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Table 1
Frequency shaping gain values for NAL-R

Frequency (Hz)

250 500 1000 2000 3000 4000 6000

ki (dB) −17 −8 1 −1 −2 −2 −2

of the active ear. These results show another possible
scenario: people are trying to 5t their gain response to
return normal neural representation.

The next experiment dealt with the prediction of
linear 5tting strategies. The formula used for the fol-
lowing examples is the NAL-RP [15] formula, intro-
duced as the NAL-R [11]. Without the profound loss
additional gain factors NAL-RP is

H3FA = (H500 + H1000 + H2000)=3; (3)

X = 0:15 ∗ H3FA; (4)

IGi = X + R ∗ Hi + ki: (5)

Here Hi is the threshold shift measured at frequency
i Hz. H3FA is the average threshold shift at 500, 1000
and 2000 Hz, X is a gain factor across all frequencies,
and R is the gain in dB for each dB of loss. In the
NAL-RP formula, R= 0:31. The insertion gain at fre-
quency i, IGi, is made up of the constant gain factor
X , 0:31:1 dB of gain per dB of threshold shift at that
frequency, and a gain factor that is dependent upon
the frequency, ki. ki is described in Table 1.

Following the half-gain rule experiment, the neural
error was used to try to predict the constants in the
NAL-RP formula. Again using LTASS input at 75 dB
SPL, the same input and output frequencies, and the
same loss pro5les, we checked to see if the gain per
dB of threshold shift in Eq. (5) (0.31:1) is predicted.
The curve in Fig. 10 is the neural distortion when the
multiplier (R) is swept from zero to one, with the
5tting strategy having a historical value of 0.31.

The minimum error of the multiplier for the strat-
egy that attempts to restore neural 5ring patterns
(0.34), based on our simulations, closely matches the
NAL-RP 5tting strategy’s multiplier (0.31), derived
through empirical evidence. Most of these curves
have a lower minimization point with the NAL-RP
formula than the half-gain rule as well, with the
exception of loss pro5le #4.

Rankovic [30] reports that people with profound
hearing loss found that 5tting with a high amount of
gain in high loss frequency regions had their intelli-
gibility reduced. Fig. 10 higher tail towards the full
1:1 dB of gain per dB of loss agrees with Rankovic,
if intelligibility is a monotonic function of neural dis-
tortion.

The 5nal modeling was to predict the NAL-RP
frequency weighting factors (ki). Here, a simultane-
ous optimization of the seven frequency gain factors,
starting at unity gain, was simulated. All initial condi-
tion were as before. The gain per dB of threshold shift
was the NAL-RP recommended 0.31:1, not 0.34:1
as recommended by the previous experiment, the re-
maining NAL-RP factors were used. It is hoped that
the frequency weightings calculated would closely
match NAL-RP’s ki factors. The optimized frequency
weightings versus the original weightings are in
Fig. 11. This is for loss pro5le #4, as a pro5le that is
typical of moderate age or noise induced hearing loss.

The calculated frequency mask in Fig. 11 has had
a small, Eat gain shift (less than a dB, which could
coincide with the di(erent optimal gain ratios) applied
to it before being plotted to center it on the NAL-RP
gain curve, emphasizing the di(erences in shape.

The basics of the calculated frequency mask and the
prescribed mask are clearly similar. The general low
frequency attenuation, and the second formant range
being emphasized is represented in both. There are
di(erences including a lowering of the gain at the knee
point of the audiogram and much lower high frequency
gain. The knee point e(ect could be introduced by
some nonlinearity between the normal hearing region
and impaired region, or a model e(ect. The lower high
frequency gain could be similar to how NAL-NL1 [12]
limits gains in highly damaged regions.

The above set of experiments started out simply and
attempted to increase the complexity to test the ba-
sic assumption that oAine modeling to return neural
patterns to a hearing impaired auditory system corre-
sponds to empirical data. This culminated in a met-
ric that shows pronounced similarities to experimental
data while being able to optimize multiple parame-
ters. This section attempted to illustrate a connection
between traditional, empirically derived hearing aid
5tting strategies, and a new quantitative metric based
on re-establishing normal neural representations in a
hearing impaired individual. The neural error metric
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Fig. 10. NAL-RP 5tting strategy with the threshold shift versus gain ratio swept to see if the neural distortion error predicts empirical,
published results. The X is at R=0:31 and the vertical bar is at the minimum value of the error surface. The mean optimal value predicted
by the neural distortion (in A) error is 0:34 dB gain per dB of hearing threshold shift versus the historical data of 0.31. The individual
error functions for each model audiogram are given in parts B–F.
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Fig. 11. NAL frequency weightings calculated through neural
error metric optimization and what was prescribed in the original
NAL-RP strategy.

produced results very similar to pragmatic data, giv-
ing credence to the possibility of evaluating many
5tting strategies quantitatively, and in corollary: the

ability to calculate optimal characteristics in design-
ing hearing-aid algorithms oAine.

5. Spectral enhancement from neural compensation

The formation of the metric and validation of the
strategy above provides for supervised training of any
type of hearing aid algorithm. Since the new compen-
sation strategy relies heavily on neural network type
training, and is in essence trying to re-establish nor-
mal neural activity, the general processing strategy
was coined Neurocompensation. A Neurocompensator
is any block whose weights are 5tted to an individ-
ual’s hearing loss through a training sequence that at-
tempts to return the normal neural code. The training
sequence is represented in Fig. 12.

The Neurocompensator, Nc, is trained on a set of
input signals, supervised by the di(erence between
the output across a set of frequencies of the normal
auditory model, H, and the output of the impaired
auditory model, H. For each training iteration the
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Fig. 12. Block representation of the Neurocompensator training
sequence. The dot operator before the frequency weightings corre-
sponds to Eq. (1), the weighting operator corresponds to Eq. (2).
The normal and impaired auditory output is a set of the auditory
model at di(erent best frequencies, while the Neurocompensator
is represented as a di(erent preprocessor at the di(erent frequen-
cies, but this is not necessarily the case. There may be only one
Neurocompensator preprocessing block.

Neurocompensator is adjusted by changing weights in
its gain function to minimize the error signal. Training
with LTASS noise will lead to a Neurocompensator
that is optimal in the mean sense. But, more interest-
ingly we are also able to train the Neurocompensator
using speech material.

The conceptual compensator block is an attempt
at spectral contrast enhancement following Schwartz
and Simoncelli [32]. The analytic equation is given
in Eq. (6).

Gi =
vif2

i∑
j wjf

2
j + �

: (6)

The gain at a frequency indexed by i; Gi, is a di-
visive function of the weighted (weighted by vi)
input power, f2

i , at frequency index i, and the
weighted sum (weighted by wj) of all the frequencies
power, f2

j . � is a term to ensure that Gi does not go
to in5nity. The weights, vi and wj, are trained in this
Neurocompensator. The format of this example will
produce a compensator that can apply level dependent
gain, but not compression versus level, and ideally
will produce some spectral contrast enhancement.
The level dependent gain should produce a weighting
that will show compression limiting.

The 5rst step in training the Neurocompensator is a
pre-processing stage where the time signal is compart-
mentalized into time-overlapped windowed samples.
These windowed samples are 5ltered into twenty fre-
quency subbands, corresponding to the model bands
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Fig. 13. Training curve for the Neurocompensator for 800 itera-
tions.

that will be combined in the error signal, and the power
is taken in each band (fk where k = [1; 2; : : : ; 20]).
These are the statistics used as the input to the com-
pensator model. A time series per frequency channel
is derived, or Gi changes over time.

Each weight, Gi, is applied per time slice to the
short-time Fourier transform and the inverse Fourier
transform is taken. All the time-slices are assembled
by overlapping and adding the processed windowed
samples. The resulting time-domain waveform is the
input to the damaged model. The input to the normal
model can be thought of having Gi equals one over
every frequency and every time-slice.

During the training phase, the vi and wj, gain co-
ePcients are adapted to minimize the error metric
summed over all the time slices. The parameters of
the compensator are optimized so that the output of Ĥ
matches the output of H as closely as possible. Once
the compensator is trained, the gain coePcients are
set and it becomes the 5nal stage of processing in a
digital hearing aid, replacing the 5tting strategy.

The Alopex algorithm [35,5] was used to train the
model weights via the error signal. Alopex is a stochas-
tic optimization algorithm closely related to reinforce-
ment learning and dynamic programming methods.
It relies on the correlation between successive posi-
tive/negative weight changes and objective function
changes from trial to trial to stochastically decide in
which direction to move each weight.
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Fig. 14. The unprocessed input spectrogram (A) and the spectrogram of the signal that would be presented to the hearing impaired ear
after Neurocompensation (B).
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Fig. 15. Gain over time for several frequencies of the trial Neurocompensator.

Initial experiments were conducted with loss pro-
5le 5ve. Instead of using LTASS noise, the dutch
syllable “kas” from the van Son et al. [37] corpus
was chosen. This was because of the diPcult to com-
pensate spectrum of the stop =k= and fricative =S=

would give a more interesting example for contrast
enhancement.

Fig. 13 shows the error signal plotted over itera-
tion. Longer test results show that this error does not
go to zero, meaning that better compensation models
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are needed, or that full restoration of the neural rep-
resentation is not possible.

The idea behind the original processing block was
that it would provide spectral unmasking, or provide
some contrast enhancement for the ear. This is plainly
evident when one compares the settled algorithm’s
spectrogram in Fig. 14B to the input spectrogram in
Fig. 14A.

The dynamic range of both spectrograms is 60 dB.
The Neurocompensator has 35 dB more energy than
the unprocessed input signal. Of special note is the
second formant in the signal spectrum for the Neuro-
compensator. It shows evidence of compelling lateral
inhibition that reduces the spectra above and below
the formant. This would spread the response to the
formant, and formant capture is very evident in the
normal auditory system.

Similarly to Kates [22] the weights are dependent
on the input stimulus, and should change over time
mimicking the cochlea’s cycle-to-cycle adaptive be-
haviour. At present, it is beyond the scope of the objec-
tive function to capture time adaptive and nonlinear,
stimulus dependent e(ects. How the vi and wj change
is a matter of future research.

This type of processing also introduces a gain
dependent upon received level. An example of the
weighting factors changing over time is given in
Fig. 15.

Fig. 15 clearly shows an attempt to aid the tran-
sient response, or the ‘=k=’ stop and the ‘=S=’ frica-
tive, and limit the voiced vowel ‘=a=’. This can be
viewed as loudness equalization across time periods,
but the present Neurocompensator trial does not have
look-ahead or look-behind in time capabilities, so it
should not be able to return proper time adaptive audi-
tory processing that is lost with sensorineural hearing
impairment. The conclusions give a few brief words
on designing time adaptive compensation strategies.

6. Conclusion

Neural code compensation can be used to expedite
development to the clinical stage. At present the Bruce
et al. [9] model of the auditory periphery seems to be
an excellent tool for oAine evaluation of hearing-aid
algorithms. It is able to reproduce a wide range of em-
pirical results. There should be a few notes of caution,

however: this model overpredicts synchrony of dam-
aged 5bers, and there is no data on how the model
deals with neural coding of transients, or with masking
in time. Future extensions to this work include deriva-
tion of an error metric that includes temporal infor-
mation. Then, not only “steady-state” nonlinearities,
such as compression ratios and compression thresh-
olds, can be examined but also timing characteristics,
such as compression attack and release times (com-
pression ballistics).

For evaluation of future nonlinear hearing-aid algo-
rithms there is a need to fully quantify suprathresh-
old e(ects [36] and derive hearing-aid signal pro-
cessing based on understanding of the impairment.
The Neurocompensator has a number of advantages
over traditional approaches including the possibility
of embedding suprathreshold knowledge in the design
procedure.

Traditional hearing aids calculate gain on a
frequency-by-frequency basis determined solely by
the audiogram, without taking into account masking
e(ects due to cross-frequency/cross-temporal interac-
tions. Such methods work well for restoring the detec-
tion of pure tones but fail to correct for many of the
masking and interference e(ects caused by the loss of
hair cell nonlinear tuning. Another bene5t of the Neu-
rocompensator is the ability to create a 5tting pro5le
for individuals with the same audiogram, but di(erent
loss types. While more sophisticated measurements
are needed to determine the percent impairment to
the OHCs and IHCs, the di(erences in intelligibility
between people with the same audiograms may be
accounted for, unlike present strategies [17]. We used
a simple 60% OHC impairment rule to 5t hair cell
loss to the audiograms, but speci5c determination of
hair cell damage may alter or improve these results.

At this point, the design of compensation strategies
based on restoring normal neural 5ring patterns seems
to be a general strategy that can subsume historical em-
pirical and recent physiological e(orts. The idea that
hearing-aid algorithm design can be viewed as neural
compensation may open the door to novel concepts in
assessing hearing impairment and scrutinizing hearing
aid algorithms. To make this strategy complete some
understanding of the true computational strategy of the
auditory system is necessary. While there have been
a few attempts at formulating an intelligibility metric
derived from the auditory neural code [8], we are still
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a long way from understanding the coding strategies
employed by given populations of neurons [31]. Thus,
the Neurocompensation strategy can be best used for
comparative prediction of new hearing-aid algorithms,
as well as being a very useful tool in their design. The
Neurocompensator proposed here has the capability,
in principle, to restore a number of the 5ltering capa-
bilities intrinsic to the cochlear hair cells.
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